Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3or2 | Structured version Visualization version GIF version |
Description: Express triple-or in terms of implication and negation. Statement in [Frege1879] p. 11. (Contributed by RP, 25-Jul-2020.) |
Ref | Expression |
---|---|
df3or2 | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 1086 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
2 | df-or 844 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (¬ (𝜑 ∨ 𝜓) → 𝜒)) | |
3 | ioran 980 | . . . . 5 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
4 | 3 | imbi1i 349 | . . . 4 ⊢ ((¬ (𝜑 ∨ 𝜓) → 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒)) |
5 | impexp 450 | . . . 4 ⊢ (((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓 → 𝜒))) | |
6 | 4, 5 | bitri 274 | . . 3 ⊢ ((¬ (𝜑 ∨ 𝜓) → 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓 → 𝜒))) |
7 | 2, 6 | bitri 274 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓 → 𝜒))) |
8 | 1, 7 | bitri 274 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |