Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3or2 Structured version   Visualization version   GIF version

Theorem df3or2 41414
Description: Express triple-or in terms of implication and negation. Statement in [Frege1879] p. 11. (Contributed by RP, 25-Jul-2020.)
Assertion
Ref Expression
df3or2 ((𝜑𝜓𝜒) ↔ (¬ 𝜑 → (¬ 𝜓𝜒)))

Proof of Theorem df3or2
StepHypRef Expression
1 df-3or 1088 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
2 df-or 846 . . 3 (((𝜑𝜓) ∨ 𝜒) ↔ (¬ (𝜑𝜓) → 𝜒))
3 ioran 982 . . . . 5 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
43imbi1i 351 . . . 4 ((¬ (𝜑𝜓) → 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒))
5 impexp 452 . . . 4 (((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓𝜒)))
64, 5bitri 276 . . 3 ((¬ (𝜑𝜓) → 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓𝜒)))
72, 6bitri 276 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓𝜒)))
81, 7bitri 276 1 ((𝜑𝜓𝜒) ↔ (¬ 𝜑 → (¬ 𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3o 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator