Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nev | Structured version Visualization version GIF version |
Description: Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
Ref | Expression |
---|---|
nev | ⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3441 | . 2 ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) | |
2 | 1 | necon3abii 2990 | 1 ⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |