![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nev | Structured version Visualization version GIF version |
Description: Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
Ref | Expression |
---|---|
nev | ⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3498 | . 2 ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) | |
2 | 1 | necon3abii 2993 | 1 ⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |