![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nev | Structured version Visualization version GIF version |
Description: Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
Ref | Expression |
---|---|
nev | ⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3487 | . 2 ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) | |
2 | 1 | necon3abii 2984 | 1 ⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1534 ∈ wcel 2105 ≠ wne 2937 Vcvv 3477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-v 3479 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |