Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nev Structured version   Visualization version   GIF version

Theorem nev 43732
Description: Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.)
Assertion
Ref Expression
nev (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nev
StepHypRef Expression
1 eqv 3498 . 2 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
21necon3abii 2993 1 (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1535  wcel 2108  wne 2946  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator