| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nev | Structured version Visualization version GIF version | ||
| Description: Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
| Ref | Expression |
|---|---|
| nev | ⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqv 3469 | . 2 ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) | |
| 2 | 1 | necon3abii 2978 | 1 ⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |