Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > el2122old | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
el2122old.1 | ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜒 ) |
el2122old.2 | ⊢ ( 𝜓 ▶ 𝜃 ) |
el2122old.3 | ⊢ ( 𝜓 ▶ 𝜏 ) |
el2122old.4 | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
el2122old | ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el2122old.1 | . . . 4 ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜒 ) | |
2 | 1 | dfvd2ani 42203 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | el2122old.2 | . . . 4 ⊢ ( 𝜓 ▶ 𝜃 ) | |
4 | 3 | in1 42191 | . . 3 ⊢ (𝜓 → 𝜃) |
5 | el2122old.3 | . . . 4 ⊢ ( 𝜓 ▶ 𝜏 ) | |
6 | 5 | in1 42191 | . . 3 ⊢ (𝜓 → 𝜏) |
7 | el2122old.4 | . . 3 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
8 | 2, 4, 6, 7 | eel2122old 42338 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
9 | 8 | dfvd2anir 42204 | 1 ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜂 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ( wvd1 42189 ( wvhc2 42200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-vd1 42190 df-vhc2 42201 |
This theorem is referenced by: suctrALTcfVD 42543 |
Copyright terms: Public domain | W3C validator |