Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int2 Structured version   Visualization version   GIF version

Theorem int2 41707
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. Conventional form of int2 41707 is ex 416. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
int2.1 (   (   𝜑   ,   𝜓   )   ▶   𝜒   )
Assertion
Ref Expression
int2 (   𝜑   ▶   (𝜓𝜒)   )

Proof of Theorem int2
StepHypRef Expression
1 int2.1 . . . 4 (   (   𝜑   ,   𝜓   )   ▶   𝜒   )
21dfvd2ani 41684 . . 3 ((𝜑𝜓) → 𝜒)
32ex 416 . 2 (𝜑 → (𝜓𝜒))
43dfvd1ir 41674 1 (   𝜑   ▶   (𝜓𝜒)   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 41670  (   wvhc2 41681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-vd1 41671  df-vhc2 41682
This theorem is referenced by:  sspwimpVD  42020  sspwimpcfVD  42022  suctrALTcfVD  42024
  Copyright terms: Public domain W3C validator