Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  un01 Structured version   Visualization version   GIF version

Theorem un01 42298
Description: A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
un01.1 (   (      ,   𝜑   )   ▶   𝜓   )
Assertion
Ref Expression
un01 (   𝜑   ▶   𝜓   )

Proof of Theorem un01
StepHypRef Expression
1 tru 1543 . . . 4
21jctl 523 . . 3 (𝜑 → (⊤ ∧ 𝜑))
3 un01.1 . . . 4 (   (      ,   𝜑   )   ▶   𝜓   )
43dfvd2ani 42092 . . 3 ((⊤ ∧ 𝜑) → 𝜓)
52, 4syl 17 . 2 (𝜑𝜓)
65dfvd1ir 42082 1 (   𝜑   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  wa 395  wtru 1540  (   wvd1 42078  (   wvhc2 42089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-vd1 42079  df-vhc2 42090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator