Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd2impr Structured version   Visualization version   GIF version

Theorem dfvd2impr 41705
Description: A 2-antecedent nested implication implies its virtual deduction form. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfvd2impr ((𝜑 → (𝜓𝜒)) → (   𝜑   ,   𝜓   ▶   𝜒   ))

Proof of Theorem dfvd2impr
StepHypRef Expression
1 dfvd2 41680 . 2 ((   𝜑   ,   𝜓   ▶   𝜒   ) ↔ (𝜑 → (𝜓𝜒)))
21biimpri 231 1 ((𝜑 → (𝜓𝜒)) → (   𝜑   ,   𝜓   ▶   𝜒   ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 41678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-vd2 41679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator