| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version | ||
| Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| Ref | Expression |
|---|---|
| in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44617 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | dfvd1ir 44605 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44601 ( wvd2 44609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44602 df-vd2 44610 |
| This theorem is referenced by: e223 44667 trsspwALT 44849 sspwtr 44852 pwtrVD 44855 pwtrrVD 44856 snssiALTVD 44858 sstrALT2VD 44865 suctrALT2VD 44867 elex2VD 44869 elex22VD 44870 eqsbc2VD 44871 tpid3gVD 44873 en3lplem1VD 44874 en3lplem2VD 44875 3ornot23VD 44878 orbi1rVD 44879 19.21a3con13vVD 44883 exbirVD 44884 exbiriVD 44885 rspsbc2VD 44886 tratrbVD 44892 syl5impVD 44894 ssralv2VD 44897 imbi12VD 44904 imbi13VD 44905 sbcim2gVD 44906 sbcbiVD 44907 truniALTVD 44909 trintALTVD 44911 onfrALTVD 44922 relopabVD 44932 19.41rgVD 44933 hbimpgVD 44935 ax6e2eqVD 44938 ax6e2ndeqVD 44940 con3ALTVD 44947 |
| Copyright terms: Public domain | W3C validator |