| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version | ||
| Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| Ref | Expression |
|---|---|
| in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44575 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | dfvd1ir 44563 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44559 ( wvd2 44567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44560 df-vd2 44568 |
| This theorem is referenced by: e223 44625 trsspwALT 44807 sspwtr 44810 pwtrVD 44813 pwtrrVD 44814 snssiALTVD 44816 sstrALT2VD 44823 suctrALT2VD 44825 elex2VD 44827 elex22VD 44828 eqsbc2VD 44829 tpid3gVD 44831 en3lplem1VD 44832 en3lplem2VD 44833 3ornot23VD 44836 orbi1rVD 44837 19.21a3con13vVD 44841 exbirVD 44842 exbiriVD 44843 rspsbc2VD 44844 tratrbVD 44850 syl5impVD 44852 ssralv2VD 44855 imbi12VD 44862 imbi13VD 44863 sbcim2gVD 44864 sbcbiVD 44865 truniALTVD 44867 trintALTVD 44869 onfrALTVD 44880 relopabVD 44890 19.41rgVD 44891 hbimpgVD 44893 ax6e2eqVD 44896 ax6e2ndeqVD 44898 con3ALTVD 44905 |
| Copyright terms: Public domain | W3C validator |