| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version | ||
| Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| Ref | Expression |
|---|---|
| in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44582 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | dfvd1ir 44570 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44566 ( wvd2 44574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44567 df-vd2 44575 |
| This theorem is referenced by: e223 44632 trsspwALT 44814 sspwtr 44817 pwtrVD 44820 pwtrrVD 44821 snssiALTVD 44823 sstrALT2VD 44830 suctrALT2VD 44832 elex2VD 44834 elex22VD 44835 eqsbc2VD 44836 tpid3gVD 44838 en3lplem1VD 44839 en3lplem2VD 44840 3ornot23VD 44843 orbi1rVD 44844 19.21a3con13vVD 44848 exbirVD 44849 exbiriVD 44850 rspsbc2VD 44851 tratrbVD 44857 syl5impVD 44859 ssralv2VD 44862 imbi12VD 44869 imbi13VD 44870 sbcim2gVD 44871 sbcbiVD 44872 truniALTVD 44874 trintALTVD 44876 onfrALTVD 44887 relopabVD 44897 19.41rgVD 44898 hbimpgVD 44900 ax6e2eqVD 44903 ax6e2ndeqVD 44905 con3ALTVD 44912 |
| Copyright terms: Public domain | W3C validator |