Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version |
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
Ref | Expression |
---|---|
in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | 1 | dfvd2i 42094 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | dfvd1ir 42082 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42078 ( wvd2 42086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-vd1 42079 df-vd2 42087 |
This theorem is referenced by: e223 42144 trsspwALT 42327 sspwtr 42330 pwtrVD 42333 pwtrrVD 42334 snssiALTVD 42336 sstrALT2VD 42343 suctrALT2VD 42345 elex2VD 42347 elex22VD 42348 eqsbc2VD 42349 tpid3gVD 42351 en3lplem1VD 42352 en3lplem2VD 42353 3ornot23VD 42356 orbi1rVD 42357 19.21a3con13vVD 42361 exbirVD 42362 exbiriVD 42363 rspsbc2VD 42364 tratrbVD 42370 syl5impVD 42372 ssralv2VD 42375 imbi12VD 42382 imbi13VD 42383 sbcim2gVD 42384 sbcbiVD 42385 truniALTVD 42387 trintALTVD 42389 onfrALTVD 42400 relopabVD 42410 19.41rgVD 42411 hbimpgVD 42413 ax6e2eqVD 42416 ax6e2ndeqVD 42418 con3ALTVD 42425 |
Copyright terms: Public domain | W3C validator |