| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version | ||
| Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| Ref | Expression |
|---|---|
| in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44577 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | dfvd1ir 44565 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44561 ( wvd2 44569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44562 df-vd2 44570 |
| This theorem is referenced by: e223 44627 trsspwALT 44809 sspwtr 44812 pwtrVD 44815 pwtrrVD 44816 snssiALTVD 44818 sstrALT2VD 44825 suctrALT2VD 44827 elex2VD 44829 elex22VD 44830 eqsbc2VD 44831 tpid3gVD 44833 en3lplem1VD 44834 en3lplem2VD 44835 3ornot23VD 44838 orbi1rVD 44839 19.21a3con13vVD 44843 exbirVD 44844 exbiriVD 44845 rspsbc2VD 44846 tratrbVD 44852 syl5impVD 44854 ssralv2VD 44857 imbi12VD 44864 imbi13VD 44865 sbcim2gVD 44866 sbcbiVD 44867 truniALTVD 44869 trintALTVD 44871 onfrALTVD 44882 relopabVD 44892 19.41rgVD 44893 hbimpgVD 44895 ax6e2eqVD 44898 ax6e2ndeqVD 44900 con3ALTVD 44907 |
| Copyright terms: Public domain | W3C validator |