![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version |
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
Ref | Expression |
---|---|
in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | 1 | dfvd2i 43346 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | dfvd1ir 43334 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43330 ( wvd2 43338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-vd1 43331 df-vd2 43339 |
This theorem is referenced by: e223 43396 trsspwALT 43579 sspwtr 43582 pwtrVD 43585 pwtrrVD 43586 snssiALTVD 43588 sstrALT2VD 43595 suctrALT2VD 43597 elex2VD 43599 elex22VD 43600 eqsbc2VD 43601 tpid3gVD 43603 en3lplem1VD 43604 en3lplem2VD 43605 3ornot23VD 43608 orbi1rVD 43609 19.21a3con13vVD 43613 exbirVD 43614 exbiriVD 43615 rspsbc2VD 43616 tratrbVD 43622 syl5impVD 43624 ssralv2VD 43627 imbi12VD 43634 imbi13VD 43635 sbcim2gVD 43636 sbcbiVD 43637 truniALTVD 43639 trintALTVD 43641 onfrALTVD 43652 relopabVD 43662 19.41rgVD 43663 hbimpgVD 43665 ax6e2eqVD 43668 ax6e2ndeqVD 43670 con3ALTVD 43677 |
Copyright terms: Public domain | W3C validator |