Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  in2 Structured version   Visualization version   GIF version

Theorem in2 44579
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
in2.1 (   𝜑   ,   𝜓   ▶   𝜒   )
Assertion
Ref Expression
in2 (   𝜑   ▶   (𝜓𝜒)   )

Proof of Theorem in2
StepHypRef Expression
1 in2.1 . . 3 (   𝜑   ,   𝜓   ▶   𝜒   )
21dfvd2i 44559 . 2 (𝜑 → (𝜓𝜒))
32dfvd1ir 44547 1 (   𝜑   ▶   (𝜓𝜒)   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 44543  (   wvd2 44551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd1 44544  df-vd2 44552
This theorem is referenced by:  e223  44609  trsspwALT  44791  sspwtr  44794  pwtrVD  44797  pwtrrVD  44798  snssiALTVD  44800  sstrALT2VD  44807  suctrALT2VD  44809  elex2VD  44811  elex22VD  44812  eqsbc2VD  44813  tpid3gVD  44815  en3lplem1VD  44816  en3lplem2VD  44817  3ornot23VD  44820  orbi1rVD  44821  19.21a3con13vVD  44825  exbirVD  44826  exbiriVD  44827  rspsbc2VD  44828  tratrbVD  44834  syl5impVD  44836  ssralv2VD  44839  imbi12VD  44846  imbi13VD  44847  sbcim2gVD  44848  sbcbiVD  44849  truniALTVD  44851  trintALTVD  44853  onfrALTVD  44864  relopabVD  44874  19.41rgVD  44875  hbimpgVD  44877  ax6e2eqVD  44880  ax6e2ndeqVD  44882  con3ALTVD  44889
  Copyright terms: Public domain W3C validator