Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  in2 Structured version   Visualization version   GIF version

Theorem in2 42535
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
in2.1 (   𝜑   ,   𝜓   ▶   𝜒   )
Assertion
Ref Expression
in2 (   𝜑   ▶   (𝜓𝜒)   )

Proof of Theorem in2
StepHypRef Expression
1 in2.1 . . 3 (   𝜑   ,   𝜓   ▶   𝜒   )
21dfvd2i 42515 . 2 (𝜑 → (𝜓𝜒))
32dfvd1ir 42503 1 (   𝜑   ▶   (𝜓𝜒)   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42499  (   wvd2 42507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-vd1 42500  df-vd2 42508
This theorem is referenced by:  e223  42565  trsspwALT  42748  sspwtr  42751  pwtrVD  42754  pwtrrVD  42755  snssiALTVD  42757  sstrALT2VD  42764  suctrALT2VD  42766  elex2VD  42768  elex22VD  42769  eqsbc2VD  42770  tpid3gVD  42772  en3lplem1VD  42773  en3lplem2VD  42774  3ornot23VD  42777  orbi1rVD  42778  19.21a3con13vVD  42782  exbirVD  42783  exbiriVD  42784  rspsbc2VD  42785  tratrbVD  42791  syl5impVD  42793  ssralv2VD  42796  imbi12VD  42803  imbi13VD  42804  sbcim2gVD  42805  sbcbiVD  42806  truniALTVD  42808  trintALTVD  42810  onfrALTVD  42821  relopabVD  42831  19.41rgVD  42832  hbimpgVD  42834  ax6e2eqVD  42837  ax6e2ndeqVD  42839  con3ALTVD  42846
  Copyright terms: Public domain W3C validator