Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version |
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
Ref | Expression |
---|---|
in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | 1 | dfvd2i 42515 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | dfvd1ir 42503 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42499 ( wvd2 42507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-vd1 42500 df-vd2 42508 |
This theorem is referenced by: e223 42565 trsspwALT 42748 sspwtr 42751 pwtrVD 42754 pwtrrVD 42755 snssiALTVD 42757 sstrALT2VD 42764 suctrALT2VD 42766 elex2VD 42768 elex22VD 42769 eqsbc2VD 42770 tpid3gVD 42772 en3lplem1VD 42773 en3lplem2VD 42774 3ornot23VD 42777 orbi1rVD 42778 19.21a3con13vVD 42782 exbirVD 42783 exbiriVD 42784 rspsbc2VD 42785 tratrbVD 42791 syl5impVD 42793 ssralv2VD 42796 imbi12VD 42803 imbi13VD 42804 sbcim2gVD 42805 sbcbiVD 42806 truniALTVD 42808 trintALTVD 42810 onfrALTVD 42821 relopabVD 42831 19.41rgVD 42832 hbimpgVD 42834 ax6e2eqVD 42837 ax6e2ndeqVD 42839 con3ALTVD 42846 |
Copyright terms: Public domain | W3C validator |