![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version |
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
Ref | Expression |
---|---|
in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | 1 | dfvd2i 40479 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | dfvd1ir 40467 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 40463 ( wvd2 40471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-vd1 40464 df-vd2 40472 |
This theorem is referenced by: e223 40529 trsspwALT 40712 sspwtr 40715 pwtrVD 40718 pwtrrVD 40719 snssiALTVD 40721 sstrALT2VD 40728 suctrALT2VD 40730 elex2VD 40732 elex22VD 40733 eqsbc3rVD 40734 tpid3gVD 40736 en3lplem1VD 40737 en3lplem2VD 40738 3ornot23VD 40741 orbi1rVD 40742 19.21a3con13vVD 40746 exbirVD 40747 exbiriVD 40748 rspsbc2VD 40749 tratrbVD 40755 syl5impVD 40757 ssralv2VD 40760 imbi12VD 40767 imbi13VD 40768 sbcim2gVD 40769 sbcbiVD 40770 truniALTVD 40772 trintALTVD 40774 onfrALTVD 40785 relopabVD 40795 19.41rgVD 40796 hbimpgVD 40798 ax6e2eqVD 40801 ax6e2ndeqVD 40803 con3ALTVD 40810 |
Copyright terms: Public domain | W3C validator |