Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version |
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
Ref | Expression |
---|---|
in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | 1 | dfvd2i 42205 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | dfvd1ir 42193 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42189 ( wvd2 42197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-vd1 42190 df-vd2 42198 |
This theorem is referenced by: e223 42255 trsspwALT 42438 sspwtr 42441 pwtrVD 42444 pwtrrVD 42445 snssiALTVD 42447 sstrALT2VD 42454 suctrALT2VD 42456 elex2VD 42458 elex22VD 42459 eqsbc2VD 42460 tpid3gVD 42462 en3lplem1VD 42463 en3lplem2VD 42464 3ornot23VD 42467 orbi1rVD 42468 19.21a3con13vVD 42472 exbirVD 42473 exbiriVD 42474 rspsbc2VD 42475 tratrbVD 42481 syl5impVD 42483 ssralv2VD 42486 imbi12VD 42493 imbi13VD 42494 sbcim2gVD 42495 sbcbiVD 42496 truniALTVD 42498 trintALTVD 42500 onfrALTVD 42511 relopabVD 42521 19.41rgVD 42522 hbimpgVD 42524 ax6e2eqVD 42527 ax6e2ndeqVD 42529 con3ALTVD 42536 |
Copyright terms: Public domain | W3C validator |