| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version | ||
| Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| Ref | Expression |
|---|---|
| in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44702 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | dfvd1ir 44690 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44686 ( wvd2 44694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44687 df-vd2 44695 |
| This theorem is referenced by: e223 44752 trsspwALT 44934 sspwtr 44937 pwtrVD 44940 pwtrrVD 44941 snssiALTVD 44943 sstrALT2VD 44950 suctrALT2VD 44952 elex2VD 44954 elex22VD 44955 eqsbc2VD 44956 tpid3gVD 44958 en3lplem1VD 44959 en3lplem2VD 44960 3ornot23VD 44963 orbi1rVD 44964 19.21a3con13vVD 44968 exbirVD 44969 exbiriVD 44970 rspsbc2VD 44971 tratrbVD 44977 syl5impVD 44979 ssralv2VD 44982 imbi12VD 44989 imbi13VD 44990 sbcim2gVD 44991 sbcbiVD 44992 truniALTVD 44994 trintALTVD 44996 onfrALTVD 45007 relopabVD 45017 19.41rgVD 45018 hbimpgVD 45020 ax6e2eqVD 45023 ax6e2ndeqVD 45025 con3ALTVD 45032 |
| Copyright terms: Public domain | W3C validator |