Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  in2 Structured version   Visualization version   GIF version

Theorem in2 42114
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
in2.1 (   𝜑   ,   𝜓   ▶   𝜒   )
Assertion
Ref Expression
in2 (   𝜑   ▶   (𝜓𝜒)   )

Proof of Theorem in2
StepHypRef Expression
1 in2.1 . . 3 (   𝜑   ,   𝜓   ▶   𝜒   )
21dfvd2i 42094 . 2 (𝜑 → (𝜓𝜒))
32dfvd1ir 42082 1 (   𝜑   ▶   (𝜓𝜒)   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42078  (   wvd2 42086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-vd1 42079  df-vd2 42087
This theorem is referenced by:  e223  42144  trsspwALT  42327  sspwtr  42330  pwtrVD  42333  pwtrrVD  42334  snssiALTVD  42336  sstrALT2VD  42343  suctrALT2VD  42345  elex2VD  42347  elex22VD  42348  eqsbc2VD  42349  tpid3gVD  42351  en3lplem1VD  42352  en3lplem2VD  42353  3ornot23VD  42356  orbi1rVD  42357  19.21a3con13vVD  42361  exbirVD  42362  exbiriVD  42363  rspsbc2VD  42364  tratrbVD  42370  syl5impVD  42372  ssralv2VD  42375  imbi12VD  42382  imbi13VD  42383  sbcim2gVD  42384  sbcbiVD  42385  truniALTVD  42387  trintALTVD  42389  onfrALTVD  42400  relopabVD  42410  19.41rgVD  42411  hbimpgVD  42413  ax6e2eqVD  42416  ax6e2ndeqVD  42418  con3ALTVD  42425
  Copyright terms: Public domain W3C validator