Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  in2 Structured version   Visualization version   GIF version

Theorem in2 44602
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
in2.1 (   𝜑   ,   𝜓   ▶   𝜒   )
Assertion
Ref Expression
in2 (   𝜑   ▶   (𝜓𝜒)   )

Proof of Theorem in2
StepHypRef Expression
1 in2.1 . . 3 (   𝜑   ,   𝜓   ▶   𝜒   )
21dfvd2i 44582 . 2 (𝜑 → (𝜓𝜒))
32dfvd1ir 44570 1 (   𝜑   ▶   (𝜓𝜒)   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 44566  (   wvd2 44574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd1 44567  df-vd2 44575
This theorem is referenced by:  e223  44632  trsspwALT  44814  sspwtr  44817  pwtrVD  44820  pwtrrVD  44821  snssiALTVD  44823  sstrALT2VD  44830  suctrALT2VD  44832  elex2VD  44834  elex22VD  44835  eqsbc2VD  44836  tpid3gVD  44838  en3lplem1VD  44839  en3lplem2VD  44840  3ornot23VD  44843  orbi1rVD  44844  19.21a3con13vVD  44848  exbirVD  44849  exbiriVD  44850  rspsbc2VD  44851  tratrbVD  44857  syl5impVD  44859  ssralv2VD  44862  imbi12VD  44869  imbi13VD  44870  sbcim2gVD  44871  sbcbiVD  44872  truniALTVD  44874  trintALTVD  44876  onfrALTVD  44887  relopabVD  44897  19.41rgVD  44898  hbimpgVD  44900  ax6e2eqVD  44903  ax6e2ndeqVD  44905  con3ALTVD  44912
  Copyright terms: Public domain W3C validator