![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version |
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
Ref | Expression |
---|---|
in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | 1 | dfvd2i 44556 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | dfvd1ir 44544 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 44540 ( wvd2 44548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44541 df-vd2 44549 |
This theorem is referenced by: e223 44606 trsspwALT 44789 sspwtr 44792 pwtrVD 44795 pwtrrVD 44796 snssiALTVD 44798 sstrALT2VD 44805 suctrALT2VD 44807 elex2VD 44809 elex22VD 44810 eqsbc2VD 44811 tpid3gVD 44813 en3lplem1VD 44814 en3lplem2VD 44815 3ornot23VD 44818 orbi1rVD 44819 19.21a3con13vVD 44823 exbirVD 44824 exbiriVD 44825 rspsbc2VD 44826 tratrbVD 44832 syl5impVD 44834 ssralv2VD 44837 imbi12VD 44844 imbi13VD 44845 sbcim2gVD 44846 sbcbiVD 44847 truniALTVD 44849 trintALTVD 44851 onfrALTVD 44862 relopabVD 44872 19.41rgVD 44873 hbimpgVD 44875 ax6e2eqVD 44878 ax6e2ndeqVD 44880 con3ALTVD 44887 |
Copyright terms: Public domain | W3C validator |