| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version | ||
| Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| Ref | Expression |
|---|---|
| in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | dfvd2i 44559 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | dfvd1ir 44547 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44543 ( wvd2 44551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44544 df-vd2 44552 |
| This theorem is referenced by: e223 44609 trsspwALT 44791 sspwtr 44794 pwtrVD 44797 pwtrrVD 44798 snssiALTVD 44800 sstrALT2VD 44807 suctrALT2VD 44809 elex2VD 44811 elex22VD 44812 eqsbc2VD 44813 tpid3gVD 44815 en3lplem1VD 44816 en3lplem2VD 44817 3ornot23VD 44820 orbi1rVD 44821 19.21a3con13vVD 44825 exbirVD 44826 exbiriVD 44827 rspsbc2VD 44828 tratrbVD 44834 syl5impVD 44836 ssralv2VD 44839 imbi12VD 44846 imbi13VD 44847 sbcim2gVD 44848 sbcbiVD 44849 truniALTVD 44851 trintALTVD 44853 onfrALTVD 44864 relopabVD 44874 19.41rgVD 44875 hbimpgVD 44877 ax6e2eqVD 44880 ax6e2ndeqVD 44882 con3ALTVD 44889 |
| Copyright terms: Public domain | W3C validator |