Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  in2 Structured version   Visualization version   GIF version

Theorem in2 44637
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
in2.1 (   𝜑   ,   𝜓   ▶   𝜒   )
Assertion
Ref Expression
in2 (   𝜑   ▶   (𝜓𝜒)   )

Proof of Theorem in2
StepHypRef Expression
1 in2.1 . . 3 (   𝜑   ,   𝜓   ▶   𝜒   )
21dfvd2i 44617 . 2 (𝜑 → (𝜓𝜒))
32dfvd1ir 44605 1 (   𝜑   ▶   (𝜓𝜒)   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 44601  (   wvd2 44609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd1 44602  df-vd2 44610
This theorem is referenced by:  e223  44667  trsspwALT  44849  sspwtr  44852  pwtrVD  44855  pwtrrVD  44856  snssiALTVD  44858  sstrALT2VD  44865  suctrALT2VD  44867  elex2VD  44869  elex22VD  44870  eqsbc2VD  44871  tpid3gVD  44873  en3lplem1VD  44874  en3lplem2VD  44875  3ornot23VD  44878  orbi1rVD  44879  19.21a3con13vVD  44883  exbirVD  44884  exbiriVD  44885  rspsbc2VD  44886  tratrbVD  44892  syl5impVD  44894  ssralv2VD  44897  imbi12VD  44904  imbi13VD  44905  sbcim2gVD  44906  sbcbiVD  44907  truniALTVD  44909  trintALTVD  44911  onfrALTVD  44922  relopabVD  44932  19.41rgVD  44933  hbimpgVD  44935  ax6e2eqVD  44938  ax6e2ndeqVD  44940  con3ALTVD  44947
  Copyright terms: Public domain W3C validator