| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd3ir | Structured version Visualization version GIF version | ||
| Description: Right-to-left inference form of dfvd3 44583. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfvd3ir.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| dfvd3ir | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfvd3ir.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | dfvd3 44583 | . 2 ⊢ (( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd3 44579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-vd3 44582 |
| This theorem is referenced by: vd03 44591 vd13 44593 vd23 44594 in3an 44603 idn3 44607 gen31 44613 e223 44627 e333 44724 e233 44756 e323 44757 |
| Copyright terms: Public domain | W3C validator |