Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e123 Structured version   Visualization version   GIF version

Theorem e123 42271
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e123.1 (   𝜑   ▶   𝜓   )
e123.2 (   𝜑   ,   𝜒   ▶   𝜃   )
e123.3 (   𝜑   ,   𝜒   ,   𝜏   ▶   𝜂   )
e123.4 (𝜓 → (𝜃 → (𝜂𝜁)))
Assertion
Ref Expression
e123 (   𝜑   ,   𝜒   ,   𝜏   ▶   𝜁   )

Proof of Theorem e123
StepHypRef Expression
1 e123.1 . . 3 (   𝜑   ▶   𝜓   )
21vd13 42110 . 2 (   𝜑   ,   𝜒   ,   𝜏   ▶   𝜓   )
3 e123.2 . . 3 (   𝜑   ,   𝜒   ▶   𝜃   )
43vd23 42111 . 2 (   𝜑   ,   𝜒   ,   𝜏   ▶   𝜃   )
5 e123.3 . 2 (   𝜑   ,   𝜒   ,   𝜏   ▶   𝜂   )
6 e123.4 . 2 (𝜓 → (𝜃 → (𝜂𝜁)))
72, 4, 5, 6e333 42242 1 (   𝜑   ,   𝜒   ,   𝜏   ▶   𝜁   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42078  (   wvd2 42086  (   wvd3 42096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-vd1 42079  df-vd2 42087  df-vd3 42099
This theorem is referenced by:  suctrALT2VD  42345
  Copyright terms: Public domain W3C validator