Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALT2VD Structured version   Visualization version   GIF version

Theorem suctrALT2VD 44178
Description: Virtual deduction proof of suctrALT2 44179. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suctrALT2VD (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctrALT2VD
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5260 . . 3 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2 sssucid 6438 . . . . . . . 8 𝐴 ⊆ suc 𝐴
3 idn1 43916 . . . . . . . . 9 (   Tr 𝐴   ▶   Tr 𝐴   )
4 idn2 43955 . . . . . . . . . 10 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
5 simpl 482 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
64, 5e2 43973 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑧𝑦   )
7 idn3 43957 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   ▶   𝑦𝐴   )
8 trel 5267 . . . . . . . . . 10 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
98expd 415 . . . . . . . . 9 (Tr 𝐴 → (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))
103, 6, 7, 9e123 44104 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   ▶   𝑧𝐴   )
11 ssel 3970 . . . . . . . 8 (𝐴 ⊆ suc 𝐴 → (𝑧𝐴𝑧 ∈ suc 𝐴))
122, 10, 11e03 44082 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   ▶   𝑧 ∈ suc 𝐴   )
1312in3 43951 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
14 idn3 43957 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
15 eleq2 2816 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
1615biimpcd 248 . . . . . . . . 9 (𝑧𝑦 → (𝑦 = 𝐴𝑧𝐴))
176, 14, 16e23 44097 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   ▶   𝑧𝐴   )
182, 17, 11e03 44082 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   ▶   𝑧 ∈ suc 𝐴   )
1918in3 43951 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
20 simpr 484 . . . . . . . 8 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
214, 20e2 43973 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
22 elsuci 6425 . . . . . . 7 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
2321, 22e2 43973 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
24 jao 957 . . . . . 6 ((𝑦𝐴𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
2513, 19, 23, 24e222 43978 . . . . 5 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑧 ∈ suc 𝐴   )
2625in2 43947 . . . 4 (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
2726gen12 43960 . . 3 (   Tr 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
28 biimpr 219 . . 3 ((Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) → (∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴))
291, 27, 28e01 44033 . 2 (   Tr 𝐴   ▶   Tr suc 𝐴   )
3029in1 43913 1 (Tr 𝐴 → Tr suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  wal 1531   = wceq 1533  wcel 2098  wss 3943  Tr wtr 5258  suc csuc 6360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-un 3948  df-in 3950  df-ss 3960  df-sn 4624  df-uni 4903  df-tr 5259  df-suc 6364  df-vd1 43912  df-vd2 43920  df-vd3 43932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator