Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALT2VD Structured version   Visualization version   GIF version

Theorem suctrALT2VD 42129
Description: Virtual deduction proof of suctrALT2 42130. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suctrALT2VD (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctrALT2VD
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5163 . . 3 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2 sssucid 6290 . . . . . . . 8 𝐴 ⊆ suc 𝐴
3 idn1 41867 . . . . . . . . 9 (   Tr 𝐴   ▶   Tr 𝐴   )
4 idn2 41906 . . . . . . . . . 10 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
5 simpl 486 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
64, 5e2 41924 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑧𝑦   )
7 idn3 41908 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   ▶   𝑦𝐴   )
8 trel 5168 . . . . . . . . . 10 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
98expd 419 . . . . . . . . 9 (Tr 𝐴 → (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))
103, 6, 7, 9e123 42055 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   ▶   𝑧𝐴   )
11 ssel 3893 . . . . . . . 8 (𝐴 ⊆ suc 𝐴 → (𝑧𝐴𝑧 ∈ suc 𝐴))
122, 10, 11e03 42033 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   ▶   𝑧 ∈ suc 𝐴   )
1312in3 41902 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
14 idn3 41908 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
15 eleq2 2826 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
1615biimpcd 252 . . . . . . . . 9 (𝑧𝑦 → (𝑦 = 𝐴𝑧𝐴))
176, 14, 16e23 42048 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   ▶   𝑧𝐴   )
182, 17, 11e03 42033 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   ▶   𝑧 ∈ suc 𝐴   )
1918in3 41902 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
20 simpr 488 . . . . . . . 8 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
214, 20e2 41924 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
22 elsuci 6279 . . . . . . 7 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
2321, 22e2 41924 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
24 jao 961 . . . . . 6 ((𝑦𝐴𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
2513, 19, 23, 24e222 41929 . . . . 5 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑧 ∈ suc 𝐴   )
2625in2 41898 . . . 4 (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
2726gen12 41911 . . 3 (   Tr 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
28 biimpr 223 . . 3 ((Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) → (∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴))
291, 27, 28e01 41984 . 2 (   Tr 𝐴   ▶   Tr suc 𝐴   )
3029in1 41864 1 (Tr 𝐴 → Tr suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  wal 1541   = wceq 1543  wcel 2110  wss 3866  Tr wtr 5161  suc csuc 6215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-un 3871  df-in 3873  df-ss 3883  df-sn 4542  df-uni 4820  df-tr 5162  df-suc 6219  df-vd1 41863  df-vd2 41871  df-vd3 41883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator