Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALT2VD Structured version   Visualization version   GIF version

Theorem suctrALT2VD 44832
Description: Virtual deduction proof of suctrALT2 44833. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suctrALT2VD (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctrALT2VD
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5219 . . 3 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2 sssucid 6417 . . . . . . . 8 𝐴 ⊆ suc 𝐴
3 idn1 44571 . . . . . . . . 9 (   Tr 𝐴   ▶   Tr 𝐴   )
4 idn2 44610 . . . . . . . . . 10 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
5 simpl 482 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
64, 5e2 44628 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑧𝑦   )
7 idn3 44612 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   ▶   𝑦𝐴   )
8 trel 5226 . . . . . . . . . 10 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
98expd 415 . . . . . . . . 9 (Tr 𝐴 → (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))
103, 6, 7, 9e123 44758 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   ▶   𝑧𝐴   )
11 ssel 3943 . . . . . . . 8 (𝐴 ⊆ suc 𝐴 → (𝑧𝐴𝑧 ∈ suc 𝐴))
122, 10, 11e03 44736 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   ▶   𝑧 ∈ suc 𝐴   )
1312in3 44606 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
14 idn3 44612 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
15 eleq2 2818 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
1615biimpcd 249 . . . . . . . . 9 (𝑧𝑦 → (𝑦 = 𝐴𝑧𝐴))
176, 14, 16e23 44751 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   ▶   𝑧𝐴   )
182, 17, 11e03 44736 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   ▶   𝑧 ∈ suc 𝐴   )
1918in3 44606 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
20 simpr 484 . . . . . . . 8 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
214, 20e2 44628 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
22 elsuci 6404 . . . . . . 7 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
2321, 22e2 44628 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
24 jao 962 . . . . . 6 ((𝑦𝐴𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
2513, 19, 23, 24e222 44633 . . . . 5 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑧 ∈ suc 𝐴   )
2625in2 44602 . . . 4 (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
2726gen12 44615 . . 3 (   Tr 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
28 biimpr 220 . . 3 ((Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) → (∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴))
291, 27, 28e01 44688 . 2 (   Tr 𝐴   ▶   Tr suc 𝐴   )
3029in1 44568 1 (Tr 𝐴 → Tr suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  wss 3917  Tr wtr 5217  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-ss 3934  df-sn 4593  df-uni 4875  df-tr 5218  df-suc 6341  df-vd1 44567  df-vd2 44575  df-vd3 44587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator