Theorem List for Metamath Proof Explorer - 44801-44900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | uun123p4 44801 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| |
| Theorem | uun2221 44802 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 30-Dec-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| |
| Theorem | uun2221p1 44803 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜑) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| |
| Theorem | uun2221p2 44804 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
(Contributed by Alan Sare, 4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜑 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| |
| Theorem | 3impdirp1 44805 |
A deduction unionizing a non-unionized collection of virtual hypotheses.
Commuted version of 3impdir 1352. (Contributed by Alan Sare,
4-Feb-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (((𝜒 ∧ 𝜓) ∧ (𝜑 ∧ 𝜓)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| |
| Theorem | 3impcombi 44806 |
A 1-hypothesis propositional calculus deduction. (Contributed by Alan
Sare, 25-Sep-2017.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| |
| 21.41.6 Theorems proved using Virtual
Deduction
|
| |
| Theorem | trsspwALT 44807 |
Virtual deduction proof of the left-to-right implication of dftr4 5221. A
transitive class is a subset of its power class. This proof corresponds
to the virtual deduction proof of dftr4 5221 without accumulating results.
(Contributed by Alan Sare, 29-Apr-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
| |
| Theorem | trsspwALT2 44808 |
Virtual deduction proof of trsspwALT 44807. This proof is the same as the
proof of trsspwALT 44807 except each virtual deduction symbol is
replaced by
its non-virtual deduction symbol equivalent. A transitive class is a
subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
| |
| Theorem | trsspwALT3 44809 |
Short predicate calculus proof of the left-to-right implication of
dftr4 5221. A transitive class is a subset of its power
class. This
proof was constructed by applying Metamath's minimize command to the
proof of trsspwALT2 44808, which is the virtual deduction proof trsspwALT 44807
without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → 𝐴 ⊆ 𝒫 𝐴) |
| |
| Theorem | sspwtr 44810 |
Virtual deduction proof of the right-to-left implication of dftr4 5221. A
class which is a subclass of its power class is transitive. This proof
corresponds to the virtual deduction proof of sspwtr 44810 without
accumulating results. (Contributed by Alan Sare, 2-May-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
| |
| Theorem | sspwtrALT 44811 |
Virtual deduction proof of sspwtr 44810. This proof is the same as the
proof of sspwtr 44810 except each virtual deduction symbol is
replaced by
its non-virtual deduction symbol equivalent. A class which is a
subclass of its power class is transitive. (Contributed by Alan Sare,
3-May-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
| |
| Theorem | sspwtrALT2 44812 |
Short predicate calculus proof of the right-to-left implication of
dftr4 5221. A class which is a subclass of its power
class is transitive.
This proof was constructed by applying Metamath's minimize command to
the proof of sspwtrALT 44811, which is the virtual deduction proof sspwtr 44810
without virtual deductions. (Contributed by Alan Sare, 3-May-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴) |
| |
| Theorem | pwtrVD 44813 |
Virtual deduction proof of pwtr 5412; see pwtrrVD 44814 for the converse.
(Contributed by Alan Sare, 25-Aug-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → Tr 𝒫 𝐴) |
| |
| Theorem | pwtrrVD 44814 |
Virtual deduction proof of pwtr 5412; see pwtrVD 44813 for the converse.
(Contributed by Alan Sare, 25-Aug-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ (Tr 𝒫 𝐴 → Tr 𝐴) |
| |
| Theorem | suctrALT 44815 |
The successor of a transitive class is transitive. The proof of
https://us.metamath.org/other/completeusersproof/suctrvd.html
is a
Virtual Deduction proof verified by automatically transforming it into
the Metamath proof of suctrALT 44815 using completeusersproof, which is
verified by the Metamath program. The proof of
https://us.metamath.org/other/completeusersproof/suctrro.html 44815 is a
form of the completed proof which preserves the Virtual Deduction
proof's step numbers and their ordering. See suctr 6420 for the original
proof. (Contributed by Alan Sare, 11-Apr-2009.) (Revised by Alan Sare,
12-Jun-2018.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| Theorem | snssiALTVD 44816 |
Virtual deduction proof of snssiALT 44817. (Contributed by Alan Sare,
11-Sep-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| |
| Theorem | snssiALT 44817 |
If a class is an element of another class, then its singleton is a
subclass of that other class. Alternate proof of snssi 4772. This
theorem was automatically generated from snssiALTVD 44816 using a
translation program. (Contributed by Alan Sare, 11-Sep-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
| |
| Theorem | snsslVD 44818 |
Virtual deduction proof of snssl 44819. (Contributed by Alan Sare,
25-Aug-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
| |
| Theorem | snssl 44819 |
If a singleton is a subclass of another class, then the singleton's
element is an element of that other class. This theorem is the
right-to-left implication of the biconditional snss 4749.
The proof of
this theorem was automatically generated from snsslVD 44818 using a tools
command file, translateMWO.cmd, by translating the proof into its
non-virtual deduction form and minimizing it. (Contributed by Alan
Sare, 25-Aug-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
| |
| Theorem | snelpwrVD 44820 |
Virtual deduction proof of snelpwi 5403. (Contributed by Alan Sare,
25-Aug-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| |
| Theorem | unipwrVD 44821 |
Virtual deduction proof of unipwr 44822. (Contributed by Alan Sare,
25-Aug-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
| |
| Theorem | unipwr 44822 |
A class is a subclass of the union of its power class. This theorem is
the right-to-left subclass lemma of unipw 5410. The proof of this theorem
was automatically generated from unipwrVD 44821 using a tools command file ,
translateMWO.cmd , by translating the proof into its non-virtual
deduction form and minimizing it. (Contributed by Alan Sare,
25-Aug-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
| |
| Theorem | sstrALT2VD 44823 |
Virtual deduction proof of sstrALT2 44824. (Contributed by Alan Sare,
11-Sep-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| |
| Theorem | sstrALT2 44824 |
Virtual deduction proof of sstr 3955, transitivity of subclasses, Theorem
6 of [Suppes] p. 23. This theorem was
automatically generated from
sstrALT2VD 44823 using the command file
translate_without_overwriting.cmd . It was not minimized because the
automated minimization excluding duplicates generates a minimized proof
which, although not directly containing any duplicates, indirectly
contains a duplicate. That is, the trace back of the minimized proof
contains a duplicate. This is undesirable because some step(s) of the
minimized proof use the proven theorem. (Contributed by Alan Sare,
11-Sep-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| |
| Theorem | suctrALT2VD 44825 |
Virtual deduction proof of suctrALT2 44826. (Contributed by Alan Sare,
11-Sep-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| Theorem | suctrALT2 44826 |
Virtual deduction proof of suctr 6420. The successor of a transitive
class is transitive. This proof was generated automatically from the
virtual deduction proof suctrALT2VD 44825 using the tools command file
translate_without_overwriting_minimize_excluding_duplicates.cmd .
(Contributed by Alan Sare, 11-Sep-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (Tr 𝐴 → Tr suc 𝐴) |
| |
| Theorem | elex2VD 44827* |
Virtual deduction proof of elex2 2805. (Contributed by Alan Sare,
25-Sep-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| |
| Theorem | elex22VD 44828* |
Virtual deduction proof of elex22 3472. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
| |
| Theorem | eqsbc2VD 44829* |
Virtual deduction proof of eqsbc2 3817. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 = 𝑥 ↔ 𝐶 = 𝐴)) |
| |
| Theorem | zfregs2VD 44830* |
Virtual deduction proof of zfregs2 9686. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (𝐴 ≠ ∅ → ¬
∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| |
| Theorem | tpid3gVD 44831 |
Virtual deduction proof of tpid3g 4736. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐷, 𝐴}) |
| |
| Theorem | en3lplem1VD 44832* |
Virtual deduction proof of en3lplem1 9565. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦 ∈ 𝑥))) |
| |
| Theorem | en3lplem2VD 44833* |
Virtual deduction proof of en3lplem2 9566. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦 ∈ 𝑥))) |
| |
| Theorem | en3lpVD 44834 |
Virtual deduction proof of en3lp 9567. (Contributed by Alan Sare,
24-Oct-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) |
| |
| 21.41.7 Theorems proved using Virtual Deduction
with mmj2 assistance
|
| |
| Theorem | simplbi2VD 44835 |
Virtual deduction proof of simplbi2 500. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| h1:: | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒))
| | 3:1,?: e0a 44761 | ⊢ ((𝜓 ∧ 𝜒) → 𝜑)
| | qed:3,?: e0a 44761 | ⊢ (𝜓 → (𝜒 → 𝜑))
|
The proof of simplbi2 500 was automatically derived from it.
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 → (𝜒 → 𝜑)) |
| |
| Theorem | 3ornot23VD 44836 |
Virtual deduction proof of 3ornot23 44499. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) ▶ (¬ 𝜑
∧ ¬ 𝜓) )
| | 2:: | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) , (𝜒 ∨ 𝜑
∨ 𝜓) ▶ (𝜒 ∨ 𝜑 ∨ 𝜓) )
| | 3:1,?: e1a 44617 | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) ▶ ¬ 𝜑 )
| | 4:1,?: e1a 44617 | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) ▶ ¬ 𝜓 )
| | 5:3,4,?: e11 44678 | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) ▶ ¬ (𝜑
∨ 𝜓) )
| | 6:2,?: e2 44621 | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) , (𝜒 ∨ 𝜑
∨ 𝜓) ▶ (𝜒 ∨ (𝜑 ∨ 𝜓)) )
| | 7:5,6,?: e12 44713 | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) , (𝜒 ∨ 𝜑
∨ 𝜓) ▶ 𝜒 )
| | 8:7: | ⊢ ( (¬ 𝜑 ∧ ¬ 𝜓) ▶ ((𝜒
∨ 𝜑 ∨ 𝜓) → 𝜒) )
| | qed:8: | ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒
∨ 𝜑 ∨ 𝜓) → 𝜒))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒 ∨ 𝜑 ∨ 𝜓) → 𝜒)) |
| |
| Theorem | orbi1rVD 44837 |
Virtual deduction proof of orbi1r 44500. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜑 ↔ 𝜓) )
| | 2:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜑)
▶ (𝜒 ∨ 𝜑) )
| | 3:2,?: e2 44621 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜑)
▶ (𝜑 ∨ 𝜒) )
| | 4:1,3,?: e12 44713 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜑)
▶ (𝜓 ∨ 𝜒) )
| | 5:4,?: e2 44621 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜑)
▶ (𝜒 ∨ 𝜓) )
| | 6:5: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒 ∨ 𝜑)
→ (𝜒 ∨ 𝜓)) )
| | 7:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜓)
▶ (𝜒 ∨ 𝜓) )
| | 8:7,?: e2 44621 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜓)
▶ (𝜓 ∨ 𝜒) )
| | 9:1,8,?: e12 44713 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜓)
▶ (𝜑 ∨ 𝜒) )
| | 10:9,?: e2 44621 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ∨ 𝜓)
▶ (𝜒 ∨ 𝜑) )
| | 11:10: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒 ∨ 𝜓)
→ (𝜒 ∨ 𝜑)) )
| | 12:6,11,?: e11 44678 | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒
∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) )
| | qed:12: | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∨ 𝜑)
↔ (𝜒 ∨ 𝜓)))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) |
| |
| Theorem | bitr3VD 44838 |
Virtual deduction proof of bitr3 352. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜑
↔ 𝜓) )
| | 2:1,?: e1a 44617 | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜓
↔ 𝜑) )
| | 3:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜑 ↔ 𝜒)
▶ (𝜑 ↔ 𝜒) )
| | 4:3,?: e2 44621 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜑 ↔ 𝜒)
▶ (𝜒 ↔ 𝜑) )
| | 5:2,4,?: e12 44713 | ⊢ ( (𝜑 ↔ 𝜓) , (𝜑 ↔ 𝜒)
▶ (𝜓 ↔ 𝜒) )
| | 6:5: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜑
↔ 𝜒) → (𝜓 ↔ 𝜒)) )
| | qed:6: | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒)
→ (𝜓 ↔ 𝜒)))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) → (𝜓 ↔ 𝜒))) |
| |
| Theorem | 3orbi123VD 44839 |
Virtual deduction proof of 3orbi123 44501. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧
(𝜏 ↔ 𝜂)) )
| | 2:1,?: e1a 44617 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ (𝜑 ↔ 𝜓) )
| | 3:1,?: e1a 44617 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ (𝜒 ↔ 𝜃) )
| | 4:1,?: e1a 44617 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ (𝜏 ↔ 𝜂) )
| | 5:2,3,?: e11 44678 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) )
| | 6:5,4,?: e11 44678 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃)
∨ 𝜂)) )
| | 7:?: | ⊢ (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ (𝜑
∨ 𝜒 ∨ 𝜏))
| | 8:6,7,?: e10 44684 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) ▶ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃)
∨ 𝜂)) )
| | 9:?: | ⊢ (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔
(𝜓 ∨ 𝜃 ∨ 𝜂))
| | 10:8,9,?: e10 44684 | ⊢ ( ((𝜑 ↔ 𝜓) ∧ (𝜒
↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) ▶ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨
𝜃 ∨ 𝜂)) )
| | qed:10: | ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)
∧ (𝜏 ↔ 𝜂)) → ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃
∨ 𝜂)))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂))) |
| |
| Theorem | sbc3orgVD 44840 |
Virtual deduction proof of the analogue of sbcor 3804 with three disjuncts.
The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:1,?: e1a 44617 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]((𝜑
∨ 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓)
∨ [𝐴 / 𝑥]𝜒)) )
| | 3:: | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑
∨ 𝜓 ∨ 𝜒))
| | 32:3: | ⊢ ∀𝑥(((𝜑 ∨ 𝜓) ∨ 𝜒)
↔ (𝜑 ∨ 𝜓 ∨ 𝜒))
| | 33:1,32,?: e10 44684 | ⊢ ( 𝐴 ∈ 𝐵 ▶ [𝐴 / 𝑥](((𝜑
∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) )
| | 4:1,33,?: e11 44678 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]((𝜑
∨ 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒)) )
| | 5:2,4,?: e11 44678 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑
∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒)) )
| | 6:1,?: e1a 44617 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑
∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) )
| | 7:6,?: e1a 44617 | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥](𝜑
∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)
∨ [𝐴 / 𝑥]𝜒)) )
| | 8:5,7,?: e11 44678 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑
∨ 𝜓 ∨ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)
∨ [𝐴 / 𝑥]𝜒)) )
| | 9:?: | ⊢ ((([𝐴 / 𝑥]𝜑
∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑
∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒))
| | 10:8,9,?: e10 44684 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑
∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓
∨ [𝐴 / 𝑥]𝜒)) )
| | qed:10: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑
∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓
∨ [𝐴 / 𝑥]𝜒)))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒))) |
| |
| Theorem | 19.21a3con13vVD 44841* |
Virtual deduction proof of alrim3con13v 44523. The following user's
proof is completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( (𝜑 → ∀𝑥𝜑)
▶ (𝜑 → ∀𝑥𝜑) )
| | 2:: | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓 ∧ 𝜑
∧ 𝜒) ▶ (𝜓 ∧ 𝜑 ∧ 𝜒) )
| | 3:2,?: e2 44621 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ 𝜓 )
| | 4:2,?: e2 44621 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ 𝜑 )
| | 5:2,?: e2 44621 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ 𝜒 )
| | 6:1,4,?: e12 44713 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ ∀𝑥𝜑 )
| | 7:3,?: e2 44621 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ ∀𝑥𝜓 )
| | 8:5,?: e2 44621 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ ∀𝑥𝜒 )
| | 9:7,6,8,?: e222 44626 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ (∀𝑥𝜓 ∧ ∀𝑥𝜑 ∧ ∀𝑥𝜒) )
| | 10:9,?: e2 44621 | ⊢ ( (𝜑 → ∀𝑥𝜑) , (𝜓
∧ 𝜑 ∧ 𝜒) ▶ ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒) )
| | 11:10:in2 | ⊢ ( (𝜑 → ∀𝑥𝜑) ▶ ((𝜓
∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒)) )
| | qed:11:in1 | ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓
∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒)))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒))) |
| |
| Theorem | exbirVD 44842 |
Virtual deduction proof of exbir 44469. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))
▶ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) )
| | 2:: | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ,
(𝜑 ∧ 𝜓) ▶ (𝜑 ∧ 𝜓) )
| | 3:: | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ,
(𝜑 ∧ 𝜓), 𝜃 ▶ 𝜃 )
| | 5:1,2,?: e12 44713 | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒
↔ 𝜃)), (𝜑 ∧ 𝜓) ▶ (𝜒 ↔ 𝜃) )
| | 6:3,5,?: e32 44747 | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒
↔ 𝜃)), (𝜑 ∧ 𝜓), 𝜃 ▶ 𝜒 )
| | 7:6: | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒
↔ 𝜃)), (𝜑 ∧ 𝜓) ▶ (𝜃 → 𝜒) )
| | 8:7: | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))
▶ ((𝜑 ∧ 𝜓) → (𝜃 → 𝜒)) )
| | 9:8,?: e1a 44617 | ⊢ ( ((𝜑 ∧ 𝜓) → (𝜒
↔ 𝜃)) ▶ (𝜑 → (𝜓 → (𝜃 → 𝜒))) )
| | qed:9: | ⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))
→ (𝜑 → (𝜓 → (𝜃 → 𝜒))))
|
(Contributed by Alan Sare, 13-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) |
| |
| Theorem | exbiriVD 44843 |
Virtual deduction proof of exbiri 810. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| h1:: | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))
| | 2:: | ⊢ ( 𝜑 ▶ 𝜑 )
| | 3:: | ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 )
| | 4:: | ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜃 )
| | 5:2,1,?: e10 44684 | ⊢ ( 𝜑 ▶ (𝜓 → (𝜒 ↔ 𝜃)) )
| | 6:3,5,?: e21 44719 | ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 ↔ 𝜃) )
| | 7:4,6,?: e32 44747 | ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜒 )
| | 8:7: | ⊢ ( 𝜑 , 𝜓 ▶ (𝜃 → 𝜒) )
| | 9:8: | ⊢ ( 𝜑 ▶ (𝜓 → (𝜃 → 𝜒)) )
| | qed:9: | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒)))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| |
| Theorem | rspsbc2VD 44844* |
Virtual deduction proof of rspsbc2 44524. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:: | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 ▶ 𝐶 ∈ 𝐷 )
| | 3:: | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 )
| | 4:1,3,?: e13 44737 | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ [𝐴 / 𝑥]∀𝑦 ∈ 𝐷𝜑 )
| | 5:1,4,?: e13 44737 | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑦 ∈ 𝐷[𝐴 / 𝑥]𝜑 )
| | 6:2,5,?: e23 44744 | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ [𝐶 / 𝑦][𝐴 / 𝑥]𝜑 )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝐵 , 𝐶 ∈ 𝐷 ▶ (∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑) )
| | 8:7: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝐶 ∈ 𝐷
→ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)) )
| | qed:8: | ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷
→ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) |
| |
| Theorem | 3impexpVD 44845 |
Virtual deduction proof of 3impexp 1359. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ 𝜃) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) )
| | 2:: | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒)
↔ ((𝜑 ∧ 𝜓) ∧ 𝜒))
| | 3:1,2,?: e10 44684 | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ 𝜃) ▶ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) )
| | 4:3,?: e1a 44617 | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ 𝜃) ▶ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) )
| | 5:4,?: e1a 44617 | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ 𝜃) ▶ (𝜑 → (𝜓 → (𝜒 → 𝜃))) )
| | 6:5: | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)
→ (𝜑 → (𝜓 → (𝜒 → 𝜃))))
| | 7:: | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ 𝜃))) ▶ (𝜑 → (𝜓 → (𝜒 → 𝜃))) )
| | 8:7,?: e1a 44617 | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ 𝜃))) ▶ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) )
| | 9:8,?: e1a 44617 | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ 𝜃))) ▶ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) )
| | 10:2,9,?: e01 44681 | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ 𝜃))) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) )
| | 11:10: | ⊢ ((𝜑 → (𝜓 → (𝜒
→ 𝜃))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃))
| | qed:6,11,?: e00 44757 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒)
→ 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃))))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
| |
| Theorem | 3impexpbicomVD 44846 |
Virtual deduction proof of 3impexpbicom 44470. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ (𝜃 ↔ 𝜏)) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) )
| | 2:: | ⊢ ((𝜃 ↔ 𝜏) ↔ (𝜏
↔ 𝜃))
| | 3:1,2,?: e10 44684 | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ (𝜃 ↔ 𝜏)) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) )
| | 4:3,?: e1a 44617 | ⊢ ( ((𝜑 ∧ 𝜓 ∧ 𝜒)
→ (𝜃 ↔ 𝜏)) ▶ (𝜑 → (𝜓 → (𝜒 → (𝜏
↔ 𝜃)))) )
| | 5:4: | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒)
→ (𝜃 ↔ 𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏
↔ 𝜃)))))
| | 6:: | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ (𝜏 ↔ 𝜃)))) ▶ (𝜑 → (𝜓 → (𝜒 → (𝜏
↔ 𝜃)))) )
| | 7:6,?: e1a 44617 | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ (𝜏 ↔ 𝜃)))) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏
↔ 𝜃)) )
| | 8:7,2,?: e10 44684 | ⊢ ( (𝜑 → (𝜓 → (𝜒
→ (𝜏 ↔ 𝜃)))) ▶ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃
↔ 𝜏)) )
| | 9:8: | ⊢ ((𝜑 → (𝜓 → (𝜒
→ (𝜏 ↔ 𝜃)))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃
↔ 𝜏)))
| | qed:5,9,?: e00 44757 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒)
→ (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏
↔ 𝜃)))))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) |
| |
| Theorem | 3impexpbicomiVD 44847 |
Virtual deduction proof of 3impexpbicomi 44471. The following user's proof
is completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
| h1:: | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃
↔ 𝜏))
| | qed:1,?: e0a 44761 | ⊢ (𝜑 → (𝜓 → (𝜒
→ (𝜏 ↔ 𝜃))))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) |
| |
| Theorem | sbcoreleleqVD 44848* |
Virtual deduction proof of sbcoreleleq 44525. The following user's proof
is completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:1,?: e1a 44617 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑥 ∈
𝑦 ↔ 𝑥 ∈ 𝐴) )
| | 3:1,?: e1a 44617 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑦 ∈
𝑥 ↔ 𝐴 ∈ 𝑥) )
| | 4:1,?: e1a 44617 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦]𝑥 =
𝑦 ↔ 𝑥 = 𝐴) )
| | 5:2,3,4,?: e111 44664 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ((𝑥 ∈ 𝐴
∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥
∨ [𝐴 / 𝑦]𝑥 = 𝑦)) )
| | 6:1,?: e1a 44617 | ⊢ ( 𝐴 ∈ 𝐵
▶ ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥
∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) )
| | 7:5,6: e11 44678 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑦](𝑥
∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴)) )
| | qed:7: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦
∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴)))
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) |
| |
| Theorem | hbra2VD 44849* |
Virtual deduction proof of nfra2 3350. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ (∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑 →
∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| | 2:: | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔
∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| | 3:1,2,?: e00 44757 | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 →
∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| | 4:2: | ⊢ ∀𝑦(∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔
∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| | 5:4,?: e0a 44761 | ⊢ (∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔
∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| | qed:3,5,?: e00 44757 | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 →
∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑)
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
| |
| Theorem | tratrbVD 44850* |
Virtual deduction proof of tratrb 44526. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)
▶ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)
∧ 𝐵 ∈ 𝐴) )
| | 2:1,?: e1a 44617 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ Tr 𝐴 )
| | 3:1,?: e1a 44617 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)
▶ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) )
| | 4:1,?: e1a 44617 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ 𝐵 ∈ 𝐴 )
| | 5:: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) )
| | 6:5,?: e2 44621 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ 𝑥 ∈ 𝑦 )
| | 7:5,?: e2 44621 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ 𝑦 ∈ 𝐵 )
| | 8:2,7,4,?: e121 44646 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ 𝑦 ∈ 𝐴 )
| | 9:2,6,8,?: e122 44643 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ 𝑥 ∈ 𝐴 )
| | 10:: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵), 𝐵 ∈ 𝑥 ▶ 𝐵 ∈ 𝑥 )
| | 11:6,7,10,?: e223 44625 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵), 𝐵 ∈ 𝑥 ▶ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) )
| | 12:11: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ (𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)) )
| | 13:: | ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵
∧ 𝐵 ∈ 𝑥)
| | 14:12,13,?: e20 44716 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ ¬ 𝐵 ∈ 𝑥 )
| | 15:: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵 ▶ 𝑥 = 𝐵 )
| | 16:7,15,?: e23 44744 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵 ▶ 𝑦 ∈ 𝑥 )
| | 17:6,16,?: e23 44744 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵 ▶ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) )
| | 18:17: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ (𝑥 = 𝐵 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) )
| | 19:: | ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)
| | 20:18,19,?: e20 44716 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ ¬ 𝑥 = 𝐵 )
| | 21:3,?: e1a 44617 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑦 ∈ 𝐴
∀𝑥 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) )
| | 22:21,9,4,?: e121 44646 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥
∨ 𝑥 = 𝑦) )
| | 23:22,?: e2 44621 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ [𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) )
| | 24:4,23,?: e12 44713 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵) )
| | 25:14,20,24,?: e222 44626 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) ▶ 𝑥 ∈ 𝐵 )
| | 26:25: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ((𝑥 ∈ 𝑦
∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) )
| | 27:: | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦
∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨
𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| | 28:27,?: e0a 44761 | ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)
→ ∀𝑦(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥
∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴))
| | 29:28,26: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)
▶ ∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) )
| | 30:: | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦
∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑥∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦
∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| | 31:30,?: e0a 44761 | ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑥(Tr 𝐴
∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴))
| | 32:31,29: | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑥
∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) )
| | 33:32,?: e1a 44617 | ⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ Tr 𝐵 )
| | qed:33: | ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵)
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵) |
| |
| Theorem | al2imVD 44851 |
Virtual deduction proof of al2im 1814. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒))
▶ ∀𝑥(𝜑 → (𝜓 → 𝜒)) )
| | 2:1,?: e1a 44617 | ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒))
▶ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒)) )
| | 3:: | ⊢ (∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓
→ ∀𝑥𝜒))
| | 4:2,3,?: e10 44684 | ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒))
▶ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) )
| | qed:4: | ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒))
→ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) |
| |
| Theorem | syl5impVD 44852 |
Virtual deduction proof of syl5imp 44502. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
| 1:: | ⊢ ( (𝜑 → (𝜓 → 𝜒)) ▶ (𝜑
→ (𝜓 → 𝜒)) )
| | 2:1,?: e1a 44617 | ⊢ ( (𝜑 → (𝜓 → 𝜒)) ▶ (𝜓
→ (𝜑 → 𝜒)) )
| | 3:: | ⊢ ( (𝜑 → (𝜓 → 𝜒)) , (𝜃
→ 𝜓) ▶ (𝜃 → 𝜓) )
| | 4:3,2,?: e21 44719 | ⊢ ( (𝜑 → (𝜓 → 𝜒)) , (𝜃
→ 𝜓) ▶ (𝜃 → (𝜑 → 𝜒)) )
| | 5:4,?: e2 44621 | ⊢ ( (𝜑 → (𝜓 → 𝜒)) , (𝜃
→ 𝜓) ▶ (𝜑 → (𝜃 → 𝜒)) )
| | 6:5: | ⊢ ( (𝜑 → (𝜓 → 𝜒)) ▶ ((𝜃
→ 𝜓) → (𝜑 → (𝜃 → 𝜒))) )
| | qed:6: | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃
→ 𝜓) → (𝜑 → (𝜃 → 𝜒))))
|
(Contributed by Alan Sare, 31-Dec-2011.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜓) → (𝜑 → (𝜃 → 𝜒)))) |
| |
| Theorem | idiVD 44853 |
Virtual deduction proof of idiALT 44468. The following user's
proof is completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
| h1:: | ⊢ 𝜑
| | qed:1,?: e0a 44761 | ⊢ 𝜑
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ 𝜑 ⇒ ⊢ 𝜑 |
| |
| Theorem | ancomstVD 44854 |
Closed form of ancoms 458. The following user's proof is completed by
invoking mmj2's unify command and using mmj2's StepSelector to pick all
remaining steps of the Metamath proof.
| 1:: | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑))
| | qed:1,?: e0a 44761 | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓
∧ 𝜑) → 𝜒))
|
The proof of ancomst 464 is derived automatically from it.
(Contributed by
Alan Sare, 25-Dec-2011.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
| |
| Theorem | ssralv2VD 44855* |
Quantification restricted to a subclass for two quantifiers. ssralv 4015
for two quantifiers. The following User's Proof is a Virtual Deduction
proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. ssralv2 44521 is ssralv2VD 44855 without
virtual deductions and was automatically derived from ssralv2VD 44855.
| 1:: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ▶ (𝐴 ⊆ 𝐵
∧ 𝐶 ⊆ 𝐷) )
| | 2:: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 )
| | 3:1: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ▶ 𝐴 ⊆ 𝐵 )
| | 4:3,2: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐷𝜑 )
| | 5:4: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷𝜑) )
| | 6:5: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷𝜑) )
| | 7:: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 )
| | 8:7,6: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴 ▶ ∀𝑦 ∈ 𝐷𝜑 )
| | 9:1: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ▶ 𝐶 ⊆ 𝐷 )
| | 10:9,8: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴 ▶ ∀𝑦 ∈ 𝐶𝜑 )
| | 11:10: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶𝜑) )
| | 12:: | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)
→ ∀𝑥(𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷))
| | 13:: | ⊢ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑
→ ∀𝑥∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑)
| | 14:12,13,11: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶𝜑) )
| | 15:14: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐷𝜑 ▶ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑 )
| | 16:15: | ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)
▶ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑) )
| | qed:16: | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)
→ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑))
|
(Contributed by Alan Sare, 10-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
| |
| Theorem | ordelordALTVD 44856 |
An element of an ordinal class is ordinal. Proposition 7.6 of
[TakeutiZaring] p. 36. This is an alternate proof of ordelord 6354 using
the Axiom of Regularity indirectly through dford2 9573. dford2 is a
weaker definition of ordinal number. Given the Axiom of Regularity, it
need not be assumed that E Fr 𝐴 because this is inferred by the
Axiom of Regularity. The following User's Proof is a Virtual Deduction
proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. ordelordALT 44527 is ordelordALTVD 44856
without virtual deductions and was automatically derived from
ordelordALTVD 44856 using the tools program
translate..without..overwriting.cmd and the Metamath program "MM-PA>
MINIMIZE_WITH *" command.
| 1:: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ (Ord 𝐴
∧ 𝐵 ∈ 𝐴) )
| | 2:1: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ Ord 𝐴 )
| | 3:1: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ 𝐵 ∈ 𝐴 )
| | 4:2: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ Tr 𝐴 )
| | 5:2: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) )
| | 6:4,3: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ 𝐵 ⊆ 𝐴 )
| | 7:6,6,5: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑥 ∈ 𝐵
∀𝑦 ∈ 𝐵(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) )
| | 8:: | ⊢ ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)
↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| | 9:8: | ⊢ ∀𝑦((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)
↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| | 10:9: | ⊢ ∀𝑦 ∈ 𝐴((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦
∨ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| | 11:10: | ⊢ (∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦
∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| | 12:11: | ⊢ ∀𝑥(∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦
∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| | 13:12: | ⊢ ∀𝑥 ∈ 𝐴(∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦
∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))
| | 14:13: | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦
∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥
∨ 𝑥 = 𝑦))
| | 15:14,5: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) )
| | 16:4,15,3: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ Tr 𝐵 )
| | 17:16,7: | ⊢ ( (Ord 𝐴 ∧ 𝐵 ∈ 𝐴) ▶ Ord 𝐵 )
| | qed:17: | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵)
|
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
| |
| Theorem | equncomVD 44857 |
If a class equals the union of two other classes, then it equals the union
of those two classes commuted. The following User's Proof is a Virtual
Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. equncom 4122 is equncomVD 44857 without
virtual deductions and was automatically derived from equncomVD 44857.
| 1:: | ⊢ ( 𝐴 = (𝐵 ∪ 𝐶) ▶ 𝐴 = (𝐵 ∪ 𝐶) )
| | 2:: | ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵)
| | 3:1,2: | ⊢ ( 𝐴 = (𝐵 ∪ 𝐶) ▶ 𝐴 = (𝐶 ∪ 𝐵) )
| | 4:3: | ⊢ (𝐴 = (𝐵 ∪ 𝐶) → 𝐴 = (𝐶 ∪ 𝐵))
| | 5:: | ⊢ ( 𝐴 = (𝐶 ∪ 𝐵) ▶ 𝐴 = (𝐶 ∪ 𝐵) )
| | 6:5,2: | ⊢ ( 𝐴 = (𝐶 ∪ 𝐵) ▶ 𝐴 = (𝐵 ∪ 𝐶) )
| | 7:6: | ⊢ (𝐴 = (𝐶 ∪ 𝐵) → 𝐴 = (𝐵 ∪ 𝐶))
| | 8:4,7: | ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵))
|
(Contributed by Alan Sare, 17-Feb-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) |
| |
| Theorem | equncomiVD 44858 |
Inference form of equncom 4122. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. equncomi 4123 is equncomiVD 44858 without
virtual deductions and was automatically derived from equncomiVD 44858.
| h1:: | ⊢ 𝐴 = (𝐵 ∪ 𝐶)
| | qed:1: | ⊢ 𝐴 = (𝐶 ∪ 𝐵)
|
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
| |
| Theorem | sucidALTVD 44859 |
A set belongs to its successor. Alternate proof of sucid 6416.
The following User's Proof is a Virtual Deduction proof
completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. sucidALT 44860 is sucidALTVD 44859
without virtual deductions and was automatically derived from
sucidALTVD 44859. This proof illustrates that
completeusersproof.cmd will generate a Metamath proof from any
User's Proof which is "conventional" in the sense that no step
is a virtual deduction, provided that all necessary unification
theorems and transformation deductions are in set.mm.
completeusersproof.cmd automatically converts such a
conventional proof into a Virtual Deduction proof for which each
step happens to be a 0-virtual hypothesis virtual deduction.
The user does not need to search for reference theorem labels or
deduction labels nor does he(she) need to use theorems and
deductions which unify with reference theorems and deductions in
set.mm. All that is necessary is that each theorem or deduction
of the User's Proof unifies with some reference theorem or
deduction in set.mm or is a semantic variation of some theorem
or deduction which unifies with some reference theorem or
deduction in set.mm. The definition of "semantic variation" has
not been precisely defined. If it is obvious that a theorem or
deduction has the same meaning as another theorem or deduction,
then it is a semantic variation of the latter theorem or
deduction. For example, step 4 of the User's Proof is a
semantic variation of the definition (axiom)
suc 𝐴 = (𝐴 ∪ {𝐴}), which unifies with df-suc 6338, a
reference definition (axiom) in set.mm. Also, a theorem or
deduction is said to be a semantic variation of another
theorem or deduction if it is obvious upon cursory inspection
that it has the same meaning as a weaker form of the latter
theorem or deduction. For example, the deduction Ord 𝐴
infers ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) is a
semantic variation of the theorem (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴
∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥))), which unifies with
the set.mm reference definition (axiom) dford2 9573.
| h1:: | ⊢ 𝐴 ∈ V
| | 2:1: | ⊢ 𝐴 ∈ {𝐴}
| | 3:2: | ⊢ 𝐴 ∈ ({𝐴} ∪ 𝐴)
| | 4:: | ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴)
| | qed:3,4: | ⊢ 𝐴 ∈ suc 𝐴
|
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ 𝐴 ∈ suc 𝐴 |
| |
| Theorem | sucidALT 44860 |
A set belongs to its successor. This proof was automatically derived
from sucidALTVD 44859 using translate_without_overwriting.cmd and
minimizing. (Contributed by Alan Sare, 18-Feb-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ 𝐴 ∈ suc 𝐴 |
| |
| Theorem | sucidVD 44861 |
A set belongs to its successor. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools
program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sucid 6416 is sucidVD 44861 without virtual deductions and was automatically
derived from sucidVD 44861.
| h1:: | ⊢ 𝐴 ∈ V
| | 2:1: | ⊢ 𝐴 ∈ {𝐴}
| | 3:2: | ⊢ 𝐴 ∈ (𝐴 ∪ {𝐴})
| | 4:: | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴})
| | qed:3,4: | ⊢ 𝐴 ∈ suc 𝐴
|
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ 𝐴 ∈
V ⇒ ⊢ 𝐴 ∈ suc 𝐴 |
| |
| Theorem | imbi12VD 44862 |
Implication form of imbi12i 350. The following User's Proof is a Virtual
Deduction proof completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. imbi12 346 is imbi12VD 44862 without virtual
deductions and was automatically derived from imbi12VD 44862.
| 1:: | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜑 ↔ 𝜓) )
| | 2:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ (𝜒 ↔ 𝜃) )
| | 3:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑
→ 𝜒) ▶ (𝜑 → 𝜒) )
| | 4:1,3: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑
→ 𝜒) ▶ (𝜓 → 𝜒) )
| | 5:2,4: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜑
→ 𝜒) ▶ (𝜓 → 𝜃) )
| | 6:5: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜑 → 𝜒) → (𝜓 → 𝜃)) )
| | 7:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓
→ 𝜃) ▶ (𝜓 → 𝜃) )
| | 8:1,7: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓
→ 𝜃) ▶ (𝜑 → 𝜃) )
| | 9:2,8: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜓
→ 𝜃) ▶ (𝜑 → 𝜒) )
| | 10:9: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜓 → 𝜃) → (𝜑 → 𝜒)) )
| | 11:6,10: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) )
| | 12:11: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒 ↔ 𝜃)
→ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) )
| | qed:12: | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃)
→ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))))
|
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) |
| |
| Theorem | imbi13VD 44863 |
Join three logical equivalences to form equivalence of implications. The
following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 44510
is imbi13VD 44863 without virtual deductions and was automatically derived
from imbi13VD 44863.
| 1:: | ⊢ ( (𝜑 ↔ 𝜓) ▶ (𝜑 ↔ 𝜓) )
| | 2:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ (𝜒 ↔ 𝜃) )
| | 3:: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜏
↔ 𝜂) ▶ (𝜏 ↔ 𝜂) )
| | 4:2,3: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜏
↔ 𝜂) ▶ ((𝜒 → 𝜏) ↔ (𝜃 → 𝜂)) )
| | 5:1,4: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃) , (𝜏
↔ 𝜂) ▶ ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂))) )
| | 6:5: | ⊢ ( (𝜑 ↔ 𝜓) , (𝜒 ↔ 𝜃)
▶ ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃
→ 𝜂)))) )
| | 7:6: | ⊢ ( (𝜑 ↔ 𝜓) ▶ ((𝜒 ↔ 𝜃)
→ ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃
→ 𝜂))))) )
| | qed:7: | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃)
→ ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃
→ 𝜂))))))
|
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂)))))) |
| |
| Theorem | sbcim2gVD 44864 |
Distribution of class substitution over a left-nested implication.
Similar to sbcimg 3802.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
sbcim2g 44528 is sbcim2gVD 44864 without virtual deductions and was automatically
derived from sbcim2gVD 44864.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:: | ⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) ▶ [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) )
| | 3:1,2: | ⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) ▶ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜓 → 𝜒)
↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝐵 , [𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) ▶ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓
→ [𝐴 / 𝑥]𝜒)) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓
→ [𝐴 / 𝑥]𝜒))) )
| | 7:: | ⊢ ( 𝐴 ∈ 𝐵 , ([𝐴 / 𝑥]𝜑
→ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ▶ ([𝐴 / 𝑥]𝜑
→ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) )
| | 8:4,7: | ⊢ ( 𝐴 ∈ 𝐵 , ([𝐴 / 𝑥]𝜑
→ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ▶ ([𝐴 / 𝑥]𝜑
→ [𝐴 / 𝑥](𝜓 → 𝜒)) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))) )
| | 10:8,9: | ⊢ ( 𝐴 ∈ 𝐵 , ([𝐴 / 𝑥]𝜑
→ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) ▶ [𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝜑
→ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒))) )
| | 12:6,11: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝜑
→ (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓
→ [𝐴 / 𝑥]𝜒))) )
| | qed:12: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓
→ 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓
→ [𝐴 / 𝑥]𝜒))))
|
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
| |
| Theorem | sbcbiVD 44865 |
Implication form of sbcbii 3810.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
sbcbi 44529 is sbcbiVD 44865 without virtual deductions and was automatically
derived from sbcbiVD 44865.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:: | ⊢ ( 𝐴 ∈ 𝐵 , ∀𝑥(𝜑 ↔ 𝜓)
▶ ∀𝑥(𝜑 ↔ 𝜓) )
| | 3:1,2: | ⊢ ( 𝐴 ∈ 𝐵 , ∀𝑥(𝜑 ↔ 𝜓)
▶ [𝐴 / 𝑥](𝜑 ↔ 𝜓) )
| | 4:1,3: | ⊢ ( 𝐴 ∈ 𝐵 , ∀𝑥(𝜑 ↔ 𝜓)
▶ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) )
| | 5:4: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (∀𝑥(𝜑 ↔ 𝜓)
→ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) )
| | qed:5: | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 ↔ 𝜓)
→ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)))
|
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
| |
| Theorem | trsbcVD 44866* |
Formula-building inference rule for class substitution, substituting a
class variable for the setvar variable of the transitivity predicate.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
trsbc 44530 is trsbcVD 44866 without virtual deductions and was automatically
derived from trsbcVD 44866.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑧 ∈ 𝑦
↔ 𝑧 ∈ 𝑦) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝑥
↔ 𝑦 ∈ 𝐴) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑧 ∈ 𝑥
↔ 𝑧 ∈ 𝐴) )
| | 5:1,2,3,4: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝑧 ∈ 𝑦
→ ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦
→ (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴))) )
| | 6:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦
→ (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 →
([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥))) )
| | 7:5,6: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦
→ (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴
→ 𝑧 ∈ 𝐴))) )
| | 8:: | ⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴
→ 𝑧 ∈ 𝐴)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦
→ (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 10:: | ⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥
→ 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
| | 11:10: | ⊢ ∀𝑥((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥
→ 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
| | 12:1,11: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦
→ (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ [𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)
→ 𝑧 ∈ 𝑥)) )
| | 13:9,12: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 14:13: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑦([𝐴 / 𝑥]((𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 15:14: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (∀𝑦[𝐴 / 𝑥]((𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 16:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑦((𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) )
| | 17:15,16: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑦((𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 18:17: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑧([𝐴 / 𝑥]∀𝑦((
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)
→ 𝑧 ∈ 𝐴)) )
| | 19:18: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (∀𝑧[𝐴 / 𝑥]∀𝑦((
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) )
| | 20:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑧∀𝑦((
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) )
| | 21:19,20: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑧∀𝑦((
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) )
| | 22:: | ⊢ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))
| | 23:21,22: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑧∀𝑦((
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ Tr 𝐴) )
| | 24:: | ⊢ (Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦
∈ 𝑥) → 𝑧 ∈ 𝑥))
| | 25:24: | ⊢ ∀𝑥(Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦
∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))
| | 26:1,25: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]Tr 𝑥
↔ [𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) )
| | 27:23,26: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]Tr 𝑥
↔ Tr 𝐴) )
| | qed:27: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]Tr 𝑥
↔ Tr 𝐴))
|
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)) |
| |
| Theorem | truniALTVD 44867* |
The union of a class of transitive sets is transitive.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
truniALT 44531 is truniALTVD 44867 without virtual deductions and was
automatically derived from truniALTVD 44867.
| 1:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ ∀𝑥 ∈ 𝐴
Tr 𝑥 )
| | 2:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) )
| | 3:2: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ 𝑧 ∈ 𝑦 )
| | 4:2: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ 𝑦 ∈ ∪ 𝐴 )
| | 5:4: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ ∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) )
| | 6:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) )
| | 7:6: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ 𝑦 ∈ 𝑞 )
| | 8:6: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ 𝑞 ∈ 𝐴 )
| | 9:1,8: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ [𝑞 / 𝑥]Tr 𝑥 )
| | 10:8,9: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ Tr 𝑞 )
| | 11:3,7,10: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ 𝑧 ∈ 𝑞 )
| | 12:11,8: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) ▶ 𝑧 ∈ ∪ 𝐴 )
| | 13:12: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) )
| | 14:13: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ ∀𝑞((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) )
| | 15:14: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ (∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) )
| | 16:5,15: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) ▶ 𝑧 ∈ ∪ 𝐴 )
| | 17:16: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ ((𝑧 ∈ 𝑦
∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴) )
| | 18:17: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥
▶ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴) )
| | 19:18: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ Tr ∪ 𝐴 )
| | qed:19: | ⊢ (∀𝑥 ∈ 𝐴Tr 𝑥 → Tr ∪ 𝐴)
|
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪
𝐴) |
| |
| Theorem | ee33VD 44868 |
Non-virtual deduction form of e33 44723.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
ee33 44511 is ee33VD 44868 without virtual deductions and was automatically
derived from ee33VD 44868.
| h1:: | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃)))
| | h2:: | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏)))
| | h3:: | ⊢ (𝜃 → (𝜏 → 𝜂))
| | 4:1,3: | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 → 𝜂))))
| | 5:4: | ⊢ (𝜏 → (𝜑 → (𝜓 → (𝜒 → 𝜂))))
| | 6:2,5: | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓
→ (𝜒 → 𝜂))))))
| | 7:6: | ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒
→ 𝜂)))))
| | 8:7: | ⊢ (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂))))
| | qed:8: | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂)))
|
(Contributed by Alan Sare, 18-Mar-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) |
| |
| Theorem | trintALTVD 44869* |
The intersection of a class of transitive sets is transitive. Virtual
deduction proof of trintALT 44870.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
trintALT 44870 is trintALTVD 44869 without virtual deductions and was
automatically derived from trintALTVD 44869.
| 1:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ ∀𝑥 ∈ 𝐴Tr 𝑥 )
| | 2:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) )
| | 3:2: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ 𝑧 ∈ 𝑦 )
| | 4:2: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ 𝑦 ∈ ∩ 𝐴 )
| | 5:4: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ ∀𝑞 ∈ 𝐴𝑦 ∈ 𝑞 )
| | 6:5: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ (𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞) )
| | 7:: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴), 𝑞 ∈ 𝐴 ▶ 𝑞 ∈ 𝐴 )
| | 8:7,6: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴), 𝑞 ∈ 𝐴 ▶ 𝑦 ∈ 𝑞 )
| | 9:7,1: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴), 𝑞 ∈ 𝐴 ▶ [𝑞 / 𝑥]Tr 𝑥 )
| | 10:7,9: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴), 𝑞 ∈ 𝐴 ▶ Tr 𝑞 )
| | 11:10,3,8: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴), 𝑞 ∈ 𝐴 ▶ 𝑧 ∈ 𝑞 )
| | 12:11: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ (𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞) )
| | 13:12: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ ∀𝑞(𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞) )
| | 14:13: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ ∀𝑞 ∈ 𝐴𝑧 ∈ 𝑞 )
| | 15:3,14: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
∩ 𝐴) ▶ 𝑧 ∈ ∩ 𝐴 )
| | 16:15: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ ((𝑧 ∈ 𝑦 ∧ 𝑦
∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴) )
| | 17:16: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ ∀𝑧∀𝑦((𝑧
∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴) )
| | 18:17: | ⊢ ( ∀𝑥 ∈ 𝐴Tr 𝑥 ▶ Tr ∩ 𝐴 )
| | qed:18: | ⊢ (∀𝑥 ∈ 𝐴Tr 𝑥 → Tr ∩ 𝐴)
|
(Contributed by Alan Sare, 17-Apr-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩
𝐴) |
| |
| Theorem | trintALT 44870* |
The intersection of a class of transitive sets is transitive. Exercise
5(b) of [Enderton] p. 73. trintALT 44870 is an alternate proof of trint 5232.
trintALT 44870 is trintALTVD 44869 without virtual deductions and was
automatically derived from trintALTVD 44869 using the tools program
translate..without..overwriting.cmd and the Metamath program
"MM-PA>
MINIMIZE_WITH *" command. (Contributed by Alan Sare, 17-Apr-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩
𝐴) |
| |
| Theorem | undif3VD 44871 |
The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual
deduction proof of undif3 4263.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
undif3 4263 is undif3VD 44871 without virtual deductions and was automatically
derived from undif3VD 44871.
| 1:: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴
∨ 𝑥 ∈ (𝐵 ∖ 𝐶)))
| | 2:: | ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈
𝐶))
| | 3:2: | ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐶)) ↔ (𝑥
∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 4:1,3: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴
∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 5:: | ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 )
| | 6:5: | ⊢ ( 𝑥 ∈ 𝐴 ▶ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) )
| | 7:5: | ⊢ ( 𝑥 ∈ 𝐴 ▶ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴) )
| | 8:6,7: | ⊢ ( 𝑥 ∈ 𝐴 ▶ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧
(¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) )
| | 9:8: | ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (
¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 10:: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐵
∧ ¬ 𝑥 ∈ 𝐶) )
| | 11:10: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ 𝑥 ∈ 𝐵 )
| | 12:10: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ ¬ 𝑥 ∈ 𝐶
)
| | 13:11: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∨ 𝑥 ∈ 𝐵) )
| | 14:12: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (¬ 𝑥 ∈
𝐶 ∨ 𝑥 ∈ 𝐴) )
| | 15:13,14: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ ((𝑥 ∈
𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) )
| | 16:15: | ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴
∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 17:9,16: | ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))
→ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 18:: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∧ ¬ 𝑥 ∈ 𝐶) )
| | 19:18: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ 𝑥 ∈ 𝐴 )
| | 20:18: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ ¬ 𝑥 ∈ 𝐶
)
| | 21:18: | ⊢ ( (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 22:21: | ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 23:: | ⊢ ( (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐴 ∧
𝑥 ∈ 𝐴) )
| | 24:23: | ⊢ ( (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ▶ 𝑥 ∈ 𝐴 )
| | 25:24: | ⊢ ( (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 26:25: | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ (
𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 27:10: | ⊢ ( (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ▶ (𝑥 ∈ 𝐴
∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 28:27: | ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 29:: | ⊢ ( (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐵 ∧
𝑥 ∈ 𝐴) )
| | 30:29: | ⊢ ( (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ▶ 𝑥 ∈ 𝐴 )
| | 31:30: | ⊢ ( (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ▶ (𝑥 ∈ 𝐴 ∨
(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) )
| | 32:31: | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ (
𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 33:22,26: | ⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐴
∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 34:28,32: | ⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵
∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 35:33,34: | ⊢ ((((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈
𝐴 ∧ 𝑥 ∈ 𝐴)) ∨ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)))
→ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 36:: | ⊢ ((((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈
𝐴 ∧ 𝑥 ∈ 𝐴)) ∨ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)))
↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 37:36,35: | ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶
∨ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)))
| | 38:17,37: | ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))
↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 39:: | ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈
𝐴))
| | 40:39: | ⊢ (¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐶 ∧
¬ 𝑥 ∈ 𝐴))
| | 41:: | ⊢ (¬ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴) ↔ (¬ 𝑥
∈ 𝐶 ∨ 𝑥 ∈ 𝐴))
| | 42:40,41: | ⊢ (¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥
∈ 𝐴))
| | 43:: | ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵
))
| | 44:43,42: | ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ (𝐶 ∖ 𝐴)
) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴)))
| | 45:: | ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) ↔ (
𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ (𝐶 ∖ 𝐴)))
| | 46:45,44: | ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) ↔ (
(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 47:4,38: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ ((𝑥 ∈ 𝐴
∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)))
| | 48:46,47: | ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ 𝑥 ∈ ((𝐴
∪ 𝐵) ∖ (𝐶 ∖ 𝐴)))
| | 49:48: | ⊢ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ 𝑥 ∈
((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)))
| | qed:49: | ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶
∖ 𝐴))
|
(Contributed by Alan Sare, 17-Apr-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) |
| |
| Theorem | sbcssgVD 44872 |
Virtual deduction proof of sbcssg 4483.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
sbcssg 4483 is sbcssgVD 44872 without virtual deductions and was automatically
derived from sbcssgVD 44872.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐷) )
| | 4:2,3: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝑦 ∈ 𝐶 →
[𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷
)) )
| | 5:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 →
𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 → [𝐴 / 𝑥]𝑦 ∈ 𝐷)) )
| | 6:4,5: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 →
𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑦([𝐴 / 𝑥](𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 8:7: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (∀𝑦[𝐴 / 𝑥](𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)
) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑦(𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) )
| | 10:8,9: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]∀𝑦(𝑦 ∈
𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)
) )
| | 11:: | ⊢ (𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷))
| | 110:11: | ⊢ ∀𝑥(𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈
𝐷))
| | 12:1,110: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔
[𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) )
| | 13:10,12: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔
∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 14:: | ⊢ (⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ↔ ∀
𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))
| | 15:13,14: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔
⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷) )
| | qed:15: | ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋
𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷))
|
(Contributed by Alan Sare, 22-Jul-2012.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) |
| |
| Theorem | csbingVD 44873 |
Virtual deduction proof of csbin 4405.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbin 4405 is csbingVD 44873 without virtual deductions and was
automatically derived from csbingVD 44873.
| 1:: | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 )
| | 2:: | ⊢ (𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)
}
| | 20:2: | ⊢ ∀𝑥(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦
∈ 𝐷)}
| | 30:1,20: | ⊢ ( 𝐴 ∈ 𝐵 ▶ [𝐴 / 𝑥](𝐶 ∩ 𝐷) =
{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 3:1,30: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶
∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
{𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} )
| | 6:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐷) )
| | 8:6,7: | ⊢ ( 𝐴 ∈ 𝐵 ▶ (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷
)) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧
𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷)) )
| | 10:9,8: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧
𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑦([𝐴 / 𝑥](𝑦 ∈
𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) )
| | 12:11: | ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶
∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} )
| | 13:5,12: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
{𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} )
| | 14:: | ⊢ (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) = {
𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)}
| | 15:13,14: | ⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) =
(⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) )
| | qed:15: | ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (
⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)) |
| |
| Theorem | onfrALTlem5VD 44874* |
Virtual deduction proof of onfrALTlem5 44532.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem5 44532 is onfrALTlem5VD 44874 without virtual deductions and was
automatically derived from onfrALTlem5VD 44874.
| 1:: | ⊢ 𝑎 ∈ V
| | 2:1: | ⊢ (𝑎 ∩ 𝑥) ∈ V
| | 3:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎
∩ 𝑥) = ∅)
| | 4:3: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
¬ (𝑎 ∩ 𝑥) = ∅)
| | 5:: | ⊢ ((𝑎 ∩ 𝑥) ≠ ∅ ↔ ¬ (𝑎 ∩ 𝑥
) = ∅)
| | 6:4,5: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
(𝑎 ∩ 𝑥) ≠ ∅)
| | 7:2: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
[(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅)
| | 8:: | ⊢ (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
| | 9:8: | ⊢ ∀𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
| | 10:2,9: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔
[(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅)
| | 11:7,10: | ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔
[(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅)
| | 12:6,11: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔ (
𝑎 ∩ 𝑥) ≠ ∅)
| | 13:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥
) ↔ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥))
| | 14:12,13: | ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩
𝑥) ∧ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎
∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅))
| | 15:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩
𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥) ∧
[(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅))
| | 16:15,14: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩
𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥)
≠ ∅))
| | 17:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = (
⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦)
| | 18:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 = (𝑎 ∩ 𝑥)
| | 19:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦 = 𝑦
| | 20:18,19: | ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎
∩ 𝑥) / 𝑏⦌𝑦) = ((𝑎 ∩ 𝑥) ∩ 𝑦)
| | 21:17,20: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ((
𝑎 ∩ 𝑥) ∩ 𝑦)
| | 22:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) =
∅ ↔ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ⦋(𝑎 ∩ 𝑥) / 𝑏⦌
∅)
| | 23:2: | ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ = ∅
| | 24:21,23: | ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) =
⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)
| | 25:22,24: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) =
∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)
| | 26:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ↔ 𝑦 ∈
(𝑎 ∩ 𝑥))
| | 27:25,26: | ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [
(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((
𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
| | 28:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏
∩ 𝑦) = ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [(𝑎 ∩ 𝑥)
/ 𝑏](𝑏 ∩ 𝑦) = ∅))
| | 29:27,28: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏
∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) =
∅))
| | 30:29: | ⊢ ∀𝑦([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅))
| | 31:30: | ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥)
∩ 𝑦) = ∅))
| | 32:: | ⊢ (∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩
𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅
))
| | 33:31,32: | ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦)
= ∅)
| | 34:2: | ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (
𝑏 ∩ 𝑦) = ∅))
| | 35:33,34: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏
∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅)
| | 36:: | ⊢ (∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦
(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅))
| | 37:36: | ⊢ ∀𝑏(∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔
∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅))
| | 38:2,37: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏
∩ 𝑦) = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦)
= ∅))
| | 39:35,38: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏
∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)
| | 40:16,39: | ⊢ (([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩
𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠
∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
| | 41:2: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ ([(𝑎
∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) /
𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅))
| | qed:40,41: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎
∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥
)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢
([(𝑎 ∩
𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏 (𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) |
| |
| Theorem | onfrALTlem4VD 44875* |
Virtual deduction proof of onfrALTlem4 44533.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem4 44533 is onfrALTlem4VD 44875 without virtual deductions and was
automatically derived from onfrALTlem4VD 44875.
| 1:: | ⊢ 𝑦 ∈ V
| | 2:1: | ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ ⦋
𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅)
| | 3:1: | ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (⦋𝑦 / 𝑥⦌
𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥)
| | 4:1: | ⊢ ⦋𝑦 / 𝑥⦌𝑎 = 𝑎
| | 5:1: | ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦
| | 6:4,5: | ⊢ (⦋𝑦 / 𝑥⦌𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) = (
𝑎 ∩ 𝑦)
| | 7:3,6: | ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (𝑎 ∩ 𝑦)
| | 8:1: | ⊢ ⦋𝑦 / 𝑥⦌∅ = ∅
| | 9:7,8: | ⊢ (⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌
∅ ↔ (𝑎 ∩ 𝑦) = ∅)
| | 10:2,9: | ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ (𝑎
∩ 𝑦) = ∅)
| | 11:1: | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎)
| | 12:11,10: | ⊢ (([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](
𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 13:1: | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) =
∅) ↔ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅))
| | qed:13,12: | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) =
∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
| |
| Theorem | onfrALTlem3VD 44876* |
Virtual deduction proof of onfrALTlem3 44534.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem3 44534 is onfrALTlem3VD 44876 without virtual deductions and was
automatically derived from onfrALTlem3VD 44876.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎
⊆ On ∧ 𝑎 ≠ ∅) )
| | 2:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) )
| | 3:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ 𝑎 )
| | 4:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ⊆
On )
| | 5:3,4: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ On )
| | 6:5: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Ord 𝑥 )
| | 7:6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ E We 𝑥 )
| | 8:: | ⊢ (𝑎 ∩ 𝑥) ⊆ 𝑥
| | 9:7,8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ E We (𝑎 ∩ 𝑥) )
| | 10:9: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ E Fr (𝑎 ∩ 𝑥) )
| | 11:10: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∀𝑏((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠
∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) )
| | 12:: | ⊢ 𝑥 ∈ V
| | 13:12,8: | ⊢ (𝑎 ∩ 𝑥) ∈ V
| | 14:13,11: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ [(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) )
| | 15:: | ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎
∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩
𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)(
(𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
| | 16:14,15: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (
𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) =
∅) )
| | 17:: | ⊢ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥)
| | 18:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ¬ (𝑎 ∩ 𝑥) = ∅ )
| | 19:18: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑎 ∩ 𝑥) ≠ ∅ )
| | 20:17,19: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩
𝑥) ≠ ∅) )
| | qed:16,20: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅ )
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ ) |
| |
| Theorem | simplbi2comtVD 44877 |
Virtual deduction proof of simplbi2comt 501.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
simplbi2comt 501 is simplbi2comtVD 44877 without virtual deductions and was
automatically derived from simplbi2comtVD 44877.
| 1:: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜑 ↔ (
𝜓 ∧ 𝜒)) )
| | 2:1: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ ((𝜓 ∧ 𝜒
) → 𝜑) )
| | 3:2: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜓 → (𝜒
→ 𝜑)) )
| | 4:3: | ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜒 → (𝜓
→ 𝜑)) )
| | qed:4: | ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓
→ 𝜑)))
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
| |
| Theorem | onfrALTlem2VD 44878* |
Virtual deduction proof of onfrALTlem2 44536.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem2 44536 is onfrALTlem2VD 44878 without virtual deductions and was
automatically derived from onfrALTlem2VD 44878.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩
𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) )
| | 2:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ (𝑎 ∩ 𝑦) )
| | 3:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑎 )
| | 4:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎
⊆ On ∧ 𝑎 ≠ ∅) )
| | 5:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) )
| | 6:5: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ 𝑎 )
| | 7:4: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ⊆
On )
| | 8:6,7: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ On )
| | 9:8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Ord 𝑥 )
| | 10:9: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Tr 𝑥 )
| | 11:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑦 ∈ (𝑎 ∩ 𝑥) )
| | 12:11: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑦 ∈ 𝑥 )
| | 13:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑦 )
| | 14:10,12,13: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑥 )
| | 15:3,14: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ (𝑎 ∩ 𝑥) )
| | 16:13,15: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩
𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦) )
| | 17:16: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)) )
| | 18:17: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ ∀𝑧(𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)) )
| | 19:18: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑎 ∩ 𝑦) ⊆ ((𝑎 ∩ 𝑥) ∩ 𝑦) )
| | 20:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) )
| | 21:20: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ )
| | 22:19,21: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑎 ∩ 𝑦) = ∅ )
| | 23:20: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ 𝑦 ∈ (𝑎 ∩ 𝑥) )
| | 24:23: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ 𝑦 ∈ 𝑎 )
| | 25:22,24: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅) ▶ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) )
| | 26:25: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥)
∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) )
| | 27:26: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∀𝑦((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥
) ∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) )
| | 28:27: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥
) ∩ 𝑦) = ∅) → ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) )
| | 29:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦
) = ∅ )
| | 30:29: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥)
∩ 𝑦) = ∅) )
| | 31:28,30: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) )
| | qed:31: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈
𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ) |
| |
| Theorem | onfrALTlem1VD 44879* |
Virtual deduction proof of onfrALTlem1 44538.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem1 44538 is onfrALTlem1VD 44879 without virtual deductions and was
automatically derived from onfrALTlem1VD 44879.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) )
| | 2:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) )
| | 3:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)
)
| | 4:: | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅
) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 5:4: | ⊢ ∀𝑦([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥)
= ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 6:5: | ⊢ (∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥)
= ∅) ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | 7:3,6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) )
| | 8:: | ⊢ (∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ ↔ ∃𝑦(
𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| | qed:7,8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ) |
| |
| Theorem | onfrALTVD 44880 |
Virtual deduction proof of onfrALT 44539.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALT 44539 is onfrALTVD 44880 without virtual deductions and was
automatically derived from onfrALTVD 44880.
| 1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎
∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 2:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎
∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 3:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
(¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 4:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 5:: | ⊢ ((𝑎 ∩ 𝑥) = ∅ ∨ ¬ (𝑎 ∩ 𝑥) =
∅)
| | 6:5,4,3: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 7:6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑥 ∈ 𝑎
→ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 8:7: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ ∀𝑥(𝑥
∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 9:8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (∃𝑥𝑥
∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 10:: | ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥𝑥 ∈ 𝑎)
| | 11:9,10: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎 ≠
∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| | 12:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎 ⊆
On ∧ 𝑎 ≠ ∅) )
| | 13:12: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ≠
∅ )
| | 14:13,11: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ ∃𝑦 ∈
𝑎(𝑎 ∩ 𝑦) = ∅ )
| | 15:14: | ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎
(𝑎 ∩ 𝑦) = ∅)
| | 16:15: | ⊢ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦
∈ 𝑎(𝑎 ∩ 𝑦) = ∅)
| | qed:16: | ⊢ E Fr On
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ E Fr
On |
| |
| Theorem | csbeq2gVD 44881 |
Virtual deduction proof of csbeq2 3867.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbeq2 3867 is csbeq2gVD 44881 without virtual deductions and was
automatically derived from csbeq2gVD 44881.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥𝐵 = 𝐶 → [𝐴 / 𝑥]
𝐵 = 𝐶) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴
/ 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) )
| | 4:2,3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥
⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) )
| | qed:4: | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌
𝐵 = ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
| |
| Theorem | csbsngVD 44882 |
Virtual deduction proof of csbsng 4672.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbsng 4672 is csbsngVD 44882 without virtual deductions and was automatically
derived from csbsngVD 44882.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 = 𝐵
↔ ⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 )
| | 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴
/ 𝑥⦌𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 = 𝐵
↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥]𝑦
= 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]𝑦 =
𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| | 8:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]𝑦 =
𝐵} = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} )
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦
= 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| | 10:: | ⊢ {𝐵} = {𝑦 ∣ 𝑦 = 𝐵}
| | 11:10: | ⊢ ∀𝑥{𝐵} = {𝑦 ∣ 𝑦 = 𝐵}
| | 12:1,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = ⦋
𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} )
| | 13:9,12: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| | 14:: | ⊢ {⦋𝐴 / 𝑥⦌𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴
/ 𝑥⦌𝐵}
| | 15:13,14: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
⦋𝐴 / 𝑥⦌𝐵} )
| | qed:15: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋
𝐴 / 𝑥⦌𝐵})
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
| |
| Theorem | csbxpgVD 44883 |
Virtual deduction proof of csbxp 5738.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbxp 5738 is csbxpgVD 44883 without virtual deductions and was
automatically derived from csbxpgVD 44883.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔
⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑤 = 𝑤 )
| | 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 /
𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤
∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔
⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 )
| | 8:7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 /
𝑥⦌𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 9:6,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐶) )
| | 10:5,9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) )
| | 11:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) )
| | 12:10,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) )
| | 13:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑧 = 〈𝑤 ,
𝑦〉 ↔ 𝑧 = 〈𝑤, 𝑦〉) )
| | 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑧 = 〈𝑤
, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉
∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 15:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉
∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| | 16:14,15: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 17:16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 18:17: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑦[𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 19:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| | 20:18,19: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 21:20: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑤([𝐴 / 𝑥]∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 22:21: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 23:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦
(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| | 24:22,23: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 25:24: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑧([𝐴 / 𝑥]∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| | 26:25: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
)
| | 27:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥]
∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} )
| | 28:26,27: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
)
| | 29:: | ⊢ {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}
= {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| | 30:: | ⊢ (𝐵 × 𝐶) = {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ 𝐵
∧ 𝑦 ∈ 𝐶)}
| | 31:29,30: | ⊢ (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| | 32:31: | ⊢ ∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| | 33:1,32: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶))} )
| | 34:28,33: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} )
| | 35:: | ⊢ {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
| | 36:: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {
〈𝑤, 𝑦〉 ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)}
| | 37:35,36: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {𝑧
∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
| | 38:34,37: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
(⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) )
| | qed:38: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶)) |
| |
| Theorem | csbresgVD 44884 |
Virtual deduction proof of csbres 5953.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbres 5953 is csbresgVD 44884 without virtual deductions and was
automatically derived from csbresgVD 44884.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌V = V )
| | 3:2: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 /
𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × V) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 /
𝑥⦌(𝐶 × V)) =
(⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 ×
V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) )
| | 8:6,7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 ×
V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| | 9:: | ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V))
| | 10:9: | ⊢ ∀𝑥(𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V))
| | 11:1,10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) =
⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) )
| | 12:8,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶)
= (
⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| | 13:: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))
| | 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) =
(
⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) )
| | qed:14: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)) |
| |
| Theorem | csbrngVD 44885 |
Virtual deduction proof of csbrn 6176.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbrn 6176 is csbrngVD 44885 without virtual deductions and was
automatically derived from csbrngVD 44885.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]〈𝑤 , 𝑦〉
∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌〈𝑤 , 𝑦〉 =
〈𝑤, 𝑦〉 )
| | 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌〈𝑤 , 𝑦〉
∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]〈𝑤 , 𝑦〉
∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑤([𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 8:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵) )
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤〈𝑤
, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 10:9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥]∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈
𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| | 12:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} )
| | 13:11,12: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| | 14:: | ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤 , 𝑦〉 ∈ 𝐵}
| | 15:14: | ⊢ ∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤 , 𝑦〉
∈ 𝐵}
| | 16:1,15: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 /
𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} )
| | 17:13,16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = {𝑦 ∣
∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| | 18:: | ⊢ ran ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑤
, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}
| | 19:17,18: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋
𝐴 / 𝑥⦌𝐵 )
| | qed:19: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴
/ 𝑥⦌𝐵)
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵) |
| |
| Theorem | csbima12gALTVD 44886 |
Virtual deduction proof of csbima12 6050.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbima12 6050 is csbima12gALTVD 44886 without virtual deductions and was
automatically derived from csbima12gALTVD 44886.
| 1:: | ⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) =
(
⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 3:2: | ⊢ ( 𝐴 ∈ 𝐶 ▶
ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵)
= ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶
⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)
= ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) )
| | 5:3,4: | ⊢ ( 𝐴 ∈ 𝐶 ▶
⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)
= ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 6:: | ⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵)
| | 7:6: | ⊢ ∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵)
| | 8:1,7: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋
𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) )
| | 9:5,8: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) =
ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| | 10:: | ⊢ (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran
(⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)
| | 11:9,10: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (
⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) )
| | qed:11: | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋
𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
| |
| Theorem | csbunigVD 44887 |
Virtual deduction proof of csbuni 4900.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbuni 4900 is csbunigVD 44887 without virtual deductions and was
automatically derived from csbunigVD 44887.
| 1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧
∈ 𝑦) )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐵) )
| | 4:2,3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 5:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧
𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) )
| | 6:4,5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧
𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥](𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 8:7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑦[𝐴 / 𝑥](𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 9:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) )
| | 10:8,9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑧([𝐴 / 𝑥]∃𝑦(
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| | 12:11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| | 13:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}
)
| | 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| | 15:: | ⊢ ∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}
| | 16:15: | ⊢ ∀𝑥∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈
𝐵)}
| | 17:1,16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ [𝐴 / 𝑥]∪ 𝐵 = {𝑧 ∣
∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} )
| | 18:1,17: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = ⦋𝐴 /
𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} )
| | 19:14,18: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = {𝑧 ∣
∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| | 20:: | ⊢ ∪ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦
∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}
| | 21:19,20: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴
/ 𝑥⦌𝐵 )
| | qed:21: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴 /
𝑥⦌𝐵)
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪
𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵) |
| |
| Theorem | csbfv12gALTVD 44888 |
Virtual deduction proof of csbfv12 6906.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbfv12 6906 is csbfv12gALTVD 44888 without virtual deductions and was
automatically derived from csbfv12gALTVD 44888.
| 1:: | ⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 )
| | 2:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦} = {
𝑦} )
| | 3:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵
}) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌{𝐵}) )
| | 4:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
⦋𝐴 / 𝑥⦌𝐵} )
| | 5:4: | ⊢ ( 𝐴 ∈ 𝐶 ▶ (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴
/ 𝑥⦌{𝐵}) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) )
| | 6:3,5: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵
}) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) )
| | 7:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ([𝐴 / 𝑥](𝐹 “ {
𝐵}) = {𝑦} ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦}) )
| | 8:6,2: | ⊢ ( 𝐴 ∈ 𝐶 ▶ (⦋𝐴 / 𝑥⦌(𝐹 “ {
𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵})
= {𝑦}) )
| | 9:7,8: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ([𝐴 / 𝑥](𝐹 “ {
𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦})
)
| | 10:9: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ∀𝑦([𝐴 / 𝑥](𝐹
“ {𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}) )
| | 11:10: | ⊢ ( 𝐴 ∈ 𝐶 ▶ {𝑦 ∣ [𝐴 / 𝑥](𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| | 12:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ [𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} )
| | 13:11,12: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦
}} )
| | 14:13: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “
{⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| | 15:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} = ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹 “ {𝐵}) =
{𝑦}} )
| | 16:14,15: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} =
∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| | 17:: | ⊢ (𝐹‘𝐵) =
∪ {𝑦 ∣ (𝐹 “ {𝐵}) =
{𝑦}}
| | 18:17: | ⊢ ∀𝑥(𝐹‘𝐵) = ∪ {𝑦 ∣ (𝐹 “ {𝐵
}) = {𝑦}}
| | 19:1,18: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} )
| | 20:16,19: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}} )
| | 21:: | ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) =
∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}
| | 22:20,21: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) )
| | qed:22: | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) =
(⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| |
| Theorem | con5VD 44889 |
Virtual deduction proof of con5 44512.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
con5 44512 is con5VD 44889 without virtual deductions and was automatically
derived from con5VD 44889.
| 1:: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (𝜑 ↔ ¬ 𝜓) )
| | 2:1: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜓 → 𝜑) )
| | 3:2: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → ¬ ¬ 𝜓
) )
| | 4:: | ⊢ (𝜓 ↔ ¬ ¬ 𝜓)
| | 5:3,4: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → 𝜓) )
| | qed:5: | ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓))
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) |
| |
| Theorem | relopabVD 44890 |
Virtual deduction proof of relopab 5787.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
relopab 5787 is relopabVD 44890 without virtual deductions and was
automatically derived from relopabVD 44890.
| 1:: | ⊢ ( 𝑦 = 𝑣 ▶ 𝑦 = 𝑣 )
| | 2:1: | ⊢ ( 𝑦 = 𝑣 ▶ 〈𝑥 , 𝑦〉 = 〈𝑥 , 𝑣
〉 )
| | 3:: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 )
| | 4:3: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 〈𝑥 , 𝑣〉 = 〈
𝑢, 𝑣〉 )
| | 5:2,4: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 〈𝑥 , 𝑦〉 = 〈
𝑢, 𝑣〉 )
| | 6:5: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ (𝑧 = 〈𝑥 , 𝑦
〉 → 𝑧 = 〈𝑢, 𝑣〉) )
| | 7:6: | ⊢ ( 𝑦 = 𝑣 ▶ (𝑥 = 𝑢 → (𝑧 = 〈𝑥 ,
𝑦〉 → 𝑧 = 〈𝑢, 𝑣〉)) )
| | 8:7: | ⊢ (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦
〉 → 𝑧 = 〈𝑢, 𝑣〉)))
| | 9:8: | ⊢ (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧
= 〈𝑥, 𝑦〉 → 𝑧 = 〈𝑢, 𝑣〉)))
| | 90:: | ⊢ (𝑣 = 𝑦 ↔ 𝑦 = 𝑣)
| | 91:90: | ⊢ (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
| | 92:: | ⊢ ∃𝑣𝑣 = 𝑦
| | 10:91,92: | ⊢ ∃𝑣𝑦 = 𝑣
| | 11:9,10: | ⊢ ∃𝑣(𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦〉 →
𝑧 = 〈𝑢, 𝑣〉))
| | 12:11: | ⊢ (𝑥 = 𝑢 → ∃𝑣(𝑧 = 〈𝑥 , 𝑦〉 →
𝑧 = 〈𝑢, 𝑣〉))
| | 13:: | ⊢ (∃𝑣(𝑧 = 〈𝑥 , 𝑦〉 → 𝑧 = 〈𝑢
, 𝑣〉) → (𝑧 = 〈𝑥, 𝑦〉 → ∃𝑣𝑧 = 〈𝑢, 𝑣〉))
| | 14:12,13: | ⊢ (𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑣
𝑧 = 〈𝑢, 𝑣〉))
| | 15:14: | ⊢ (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = 〈𝑥 , 𝑦
〉 → ∃𝑣𝑧 = 〈𝑢, 𝑣〉))
| | 150:: | ⊢ (𝑢 = 𝑥 ↔ 𝑥 = 𝑢)
| | 151:150: | ⊢ (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
| | 152:: | ⊢ ∃𝑢𝑢 = 𝑥
| | 16:151,152: | ⊢ ∃𝑢𝑥 = 𝑢
| | 17:15,16: | ⊢ ∃𝑢(𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑣𝑧 = 〈
𝑢, 𝑣〉)
| | 18:17: | ⊢ (𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢∃𝑣𝑧 = 〈
𝑢, 𝑣〉)
| | 19:18: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑦∃𝑢
∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 20:: | ⊢ (∃𝑦∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 →
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 21:19,20: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢∃𝑣𝑧
= 〈𝑢, 𝑣〉)
| | 22:21: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑥
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 23:: | ⊢ (∃𝑥∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 →
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 24:22,23: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢
∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| | 25:24: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉} ⊆
{𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉}
| | 26:: | ⊢ 𝑥 ∈ V
| | 27:: | ⊢ 𝑦 ∈ V
| | 28:26,27: | ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V)
| | 29:28: | ⊢ (𝑧 = 〈𝑥 , 𝑦〉 ↔ (𝑧 = 〈𝑥 , 𝑦
〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| | 30:29: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 ↔ ∃𝑦(𝑧 =
〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| | 31:30: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 ↔ ∃𝑥
∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| | 32:31: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉} = {
𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
| | 320:25,32: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥 , 𝑦〉 ∧
(𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉}
| | 33:: | ⊢ 𝑢 ∈ V
| | 34:: | ⊢ 𝑣 ∈ V
| | 35:33,34: | ⊢ (𝑢 ∈ V ∧ 𝑣 ∈ V)
| | 36:35: | ⊢ (𝑧 = 〈𝑢 , 𝑣〉 ↔ (𝑧 = 〈𝑢 , 𝑣
〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| | 37:36: | ⊢ (∃𝑣𝑧 = 〈𝑢 , 𝑣〉 ↔ ∃𝑣(𝑧 =
〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| | 38:37: | ⊢ (∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 ↔ ∃𝑢
∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| | 39:38: | ⊢ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉} = {
𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
| | 40:320,39: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥 , 𝑦〉 ∧
(𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧
(𝑢 ∈ V ∧ 𝑣 ∈ V))}
| | 41:: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))
}
| | 42:: | ⊢ {〈𝑢 , 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V
)} = {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))
}
| | 43:40,41,42: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
| | 44:: | ⊢ {〈𝑢 , 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V
)} = (V × V)
| | 45:43,44: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} ⊆ (V × V)
| | 46:28: | ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
| | 47:46: | ⊢ {〈𝑥 , 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥 , 𝑦〉
∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
| | 48:45,47: | ⊢ {〈𝑥 , 𝑦〉 ∣ 𝜑} ⊆ (V × V)
| | qed:48: | ⊢ Rel {〈𝑥 , 𝑦〉 ∣ 𝜑}
|
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
| ⊢ Rel
{〈𝑥, 𝑦〉 ∣ 𝜑} |
| |
| Theorem | 19.41rgVD 44891 |
Virtual deduction proof of 19.41rg 44540.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 44540
is 19.41rgVD 44891 without virtual deductions and was automatically derived
from 19.41rgVD 44891. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓)))
| | 2:1: | ⊢ ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (
𝜑 ∧ 𝜓))))
| | 3:2: | ⊢ ∀𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑
→ (𝜑 ∧ 𝜓))))
| | 4:3: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 →
∀𝑥(𝜑 → (𝜑 ∧ 𝜓))))
| | 5:: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ ∀𝑥(𝜓
→ ∀𝑥𝜓) )
| | 6:4,5: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∀𝑥𝜓
→ ∀𝑥(𝜑 → (𝜑 ∧ 𝜓))) )
| | 7:: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
∀𝑥𝜓 )
| | 8:6,7: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
∀𝑥(𝜑 → (𝜑 ∧ 𝜓)) )
| | 9:8: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
(∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) )
| | 10:9: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∀𝑥𝜓
→ (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) )
| | 11:5: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (𝜓 → ∀
𝑥𝜓) )
| | 12:10,11: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (𝜓 → (
∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) )
| | 13:12: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∃𝑥𝜑
→ (𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) )
| | 14:13: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ ((∃𝑥
𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) )
| | qed:14: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑
∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)))
|
|
| ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
| |
| Theorem | 2pm13.193VD 44892 |
Virtual deduction proof of 2pm13.193 44542.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
2pm13.193 44542 is 2pm13.193VD 44892 without virtual deductions and was
automatically derived from 2pm13.193VD 44892. (Contributed by Alan Sare,
8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 2:1: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 3:2: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝑥 = 𝑢 )
| | 4:1: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 )
| | 5:3,4: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 6:5: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 7:6: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ [𝑣 / 𝑦]𝜑 )
| | 8:2: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝑦 = 𝑣 )
| | 9:7,8: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) )
| | 10:9: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ (𝜑 ∧ 𝑦 = 𝑣) )
| | 11:10: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝜑 )
| | 12:2,11: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| | 13:12: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣
/ 𝑦]𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 14:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ((
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| | 15:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ (𝑥
= 𝑢 ∧ 𝑦 = 𝑣) )
| | 16:15: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝑦 =
𝑣 )
| | 17:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝜑
)
| | 18:16,17: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ (
𝜑 ∧ 𝑦 = 𝑣) )
| | 19:18: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) )
| | 20:15: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝑥 =
𝑢 )
| | 21:19: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ [𝑣
/ 𝑦]𝜑 )
| | 22:20,21: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 23:22: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| | 24:23: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ [𝑢
/ 𝑥][𝑣 / 𝑦]𝜑 )
| | 25:15,24: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ((
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 26:25: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → ((𝑥
= 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | qed:13,26: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣
/ 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
|
|
| ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
| |
| Theorem | hbimpgVD 44893 |
Virtual deduction proof of hbimpg 44544.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 44544
is hbimpgVD 44893 without virtual deductions and was automatically derived
from hbimpgVD 44893. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 →
∀𝑥𝜓)) )
| | 2:1: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(𝜑 → ∀𝑥𝜑) )
| | 3:: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ¬ 𝜑 )
| | 4:2: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 5:4: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 6:3,5: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ∀𝑥¬ 𝜑 )
| | 7:: | ⊢ (¬ 𝜑 → (𝜑 → 𝜓))
| | 8:7: | ⊢ (∀𝑥¬ 𝜑 → ∀𝑥(𝜑 → 𝜓))
| | 9:6,8: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ∀𝑥(𝜑 → 𝜓) )
| | 10:9: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) )
| | 11:: | ⊢ (𝜓 → (𝜑 → 𝜓))
| | 12:11: | ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 → 𝜓))
| | 13:1: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(𝜓 → ∀𝑥𝜓) )
| | 14:13: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (𝜓 → ∀𝑥𝜓) )
| | 15:14,12: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (𝜓 → ∀𝑥(𝜑 → 𝜓)) )
| | 16:10,15: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ((¬ 𝜑 ∨ 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| | 17:: | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓))
| | 18:16,17: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| | 19:: | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑥(
𝜑 → ∀𝑥𝜑))
| | 20:: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥∀𝑥(
𝜓 → ∀𝑥𝜓))
| | 21:19,20: | ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 →
∀𝑥𝜓)))
| | 22:21,18: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| | qed:22: | ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)))
|
|
| ⊢
((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
| |
| Theorem | hbalgVD 44894 |
Virtual deduction proof of hbalg 44545.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 44545
is hbalgVD 44894 without virtual deductions and was automatically derived
from hbalgVD 44894. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(𝜑
→ ∀𝑥𝜑) )
| | 2:1: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑
→ ∀𝑦∀𝑥𝜑) )
| | 3:: | ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑)
| | 4:2,3: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑
→ ∀𝑥∀𝑦𝜑) )
| | 5:: | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑦(
𝜑 → ∀𝑥𝜑))
| | 6:5,4: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(∀
𝑦𝜑 → ∀𝑥∀𝑦𝜑) )
| | qed:6: | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦
𝜑 → ∀𝑥∀𝑦𝜑))
|
|
| ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| |
| Theorem | hbexgVD 44895 |
Virtual deduction proof of hbexg 44546.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 44546
is hbexgVD 44895 without virtual deductions and was automatically derived
from hbexgVD 44895. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(𝜑 → ∀𝑥𝜑) )
| | 2:1: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
∀𝑥(𝜑 → ∀𝑥𝜑) )
| | 3:2: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(𝜑 → ∀𝑥𝜑) )
| | 4:3: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 5:: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦
∀𝑥(𝜑 → ∀𝑥𝜑))
| | 6:: | ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦
∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑))
| | 7:5: | ⊢ (∀𝑦∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔
∀𝑦∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑))
| | 8:5,6,7: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦
∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑))
| | 9:8,4: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 10:9: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 11:10: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| | 12:11: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 13:12: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀
𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 14:: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥
∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑))
| | 15:13,14: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| | 16:15: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 17:16: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (¬
∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 18:: | ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
| | 19:17,18: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∃
𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| | 20:18: | ⊢ (∀𝑥∃𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
| | 21:19,20: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∃
𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | 22:8,21: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | 23:14,22: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| | qed:23: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
|
|
| ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
| |
| Theorem | ax6e2eqVD 44896* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44559)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 44547 is ax6e2eqVD 44896 without virtual
deductions and was automatically derived from ax6e2eqVD 44896.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥𝑥 = 𝑦 )
| | 2:: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 )
| | 3:1: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ 𝑥 = 𝑦 )
| | 4:2,3: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑦 = 𝑢 )
| | 5:2,4: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ (𝑥 = 𝑢 ∧ 𝑦
= 𝑢) )
| | 6:5: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧
𝑦 = 𝑢)) )
| | 7:6: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦
= 𝑢)))
| | 8:7: | ⊢ (∀𝑥∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (
𝑥 = 𝑢 ∧ 𝑦 = 𝑢)))
| | 9:: | ⊢ (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥∀𝑥𝑥 = 𝑦)
| | 10:8,9: | ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢
∧ 𝑦 = 𝑢)))
| | 11:1,10: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥(𝑥 = 𝑢 → (𝑥 =
𝑢 ∧ 𝑦 = 𝑢)) )
| | 12:11: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (∃𝑥𝑥 = 𝑢 → ∃𝑥
(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) )
| | 13:: | ⊢ ∃𝑥𝑥 = 𝑢
| | 14:13,12: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢
) )
| | 140:14: | ⊢ (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
)
| | 141:140: | ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦
= 𝑢))
| | 15:1,141: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 16:1,15: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 17:16: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 18:17: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| | 19:: | ⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 )
| | 20:: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 =
𝑢 ∧ 𝑦 = 𝑢) )
| | 21:20: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑢
)
| | 22:19,21: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑣
)
| | 23:20: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑥 = 𝑢
)
| | 24:22,23: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | 25:24: | ⊢ ( 𝑢 = 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (
𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 26:25: | ⊢ ( 𝑢 = 𝑣 ▶ ∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
→ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 27:26: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
→ ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 28:27: | ⊢ ( 𝑢 = 𝑣 ▶ ∀𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 29:28: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 30:29: | ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢
) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 31:18,30: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (𝑢 = 𝑣 → ∃𝑥∃𝑦
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | qed:31: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(
𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
|
|
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
| |
| Theorem | ax6e2ndVD 44897* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44559)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2nd 44548 is ax6e2ndVD 44897 without virtual
deductions and was automatically derived from ax6e2ndVD 44897.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ∃𝑦𝑦 = 𝑣
| | 2:: | ⊢ 𝑢 ∈ V
| | 3:1,2: | ⊢ (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣)
| | 4:3: | ⊢ ∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
| | 5:: | ⊢ (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢)
| | 6:5: | ⊢ ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 =
𝑢 ∧ 𝑦 = 𝑣))
| | 7:6: | ⊢ (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦
(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | 8:4,7: | ⊢ ∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)
| | 9:: | ⊢ (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣)
| | 10:: | ⊢ (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣)
| | 11:: | ⊢ ( 𝑧 = 𝑦 ▶ 𝑧 = 𝑦 )
| | 12:11: | ⊢ ( 𝑧 = 𝑦 ▶ (𝑧 = 𝑣 ↔ 𝑦 = 𝑣) )
| | 120:11: | ⊢ (𝑧 = 𝑦 → (𝑧 = 𝑣 ↔ 𝑦 = 𝑣))
| | 13:9,10,120: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦
= 𝑣))
| | 14:: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑥𝑥 = 𝑦 )
| | 15:14,13: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ (𝑦 = 𝑣 → ∀𝑥
𝑦 = 𝑣) )
| | 16:15: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦
= 𝑣))
| | 17:16: | ⊢ (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣
→ ∀𝑥𝑦 = 𝑣))
| | 18:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦
)
| | 19:17,18: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀
𝑥𝑦 = 𝑣))
| | 20:14,19: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥(𝑦 = 𝑣 →
∀𝑥𝑦 = 𝑣) )
| | 21:20: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ((∃𝑥𝑥 = 𝑢
∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 22:21: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 23:22: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 24:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦
)
| | 25:23,24: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 =
𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 26:14,25: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∀𝑦((∃𝑥𝑥
= 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 27:26: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ (∃𝑦(∃𝑥𝑥
= 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| | 28:8,27: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | 29:28: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| | qed:29: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢
∧ 𝑦 = 𝑣))
|
|
| ⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | ax6e2ndeqVD 44898* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44559)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 44547 is ax6e2ndeqVD 44898 without virtual
deductions and was automatically derived from ax6e2ndeqVD 44898.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ ( 𝑢 ≠ 𝑣 ▶ 𝑢 ≠ 𝑣 )
| | 2:: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ (
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 3:2: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
= 𝑢 )
| | 4:1,3: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
≠ 𝑣 )
| | 5:2: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑦
= 𝑣 )
| | 6:4,5: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
≠ 𝑦 )
| | 7:: | ⊢ (∀𝑥𝑥 = 𝑦 → 𝑥 = 𝑦)
| | 8:7: | ⊢ (¬ 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
| | 9:: | ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦)
| | 10:8,9: | ⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
| | 11:6,10: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶
¬ ∀𝑥𝑥 = 𝑦 )
| | 12:11: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣)
→ ¬ ∀𝑥𝑥 = 𝑦) )
| | 13:12: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑥((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 14:13: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦) )
| | 15:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦
)
| | 19:15: | ⊢ (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 =
𝑦)
| | 20:14,19: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 21:20: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑦(∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 22:21: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦) )
| | 23:: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃
𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | 24:22,23: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦) )
| | 25:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦
)
| | 26:25: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 260:: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 27:260: | ⊢ (∃𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬
∀𝑥𝑥 = 𝑦)
| | 270:26,27: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥
𝑥 = 𝑦)
| | 28:: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦
)
| | 29:270,28: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦
)
| | 30:24,29: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| | 31:30: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) )
| | 32:31: | ⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)))
| | 33:: | ⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 )
| | 34:33: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → 𝑢 = 𝑣) )
| | 35:34: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) )
| | 36:35: | ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)))
| | 37:: | ⊢ (𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣)
| | 38:32,36,37: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (
¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣))
| | 39:: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 40:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢
∧ 𝑦 = 𝑣))
| | 41:40: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃
𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| | 42:: | ⊢ (∀𝑥𝑥 = 𝑦 ∨ ¬ ∀𝑥𝑥 = 𝑦)
| | 43:39,41,42: | ⊢ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣
))
| | 44:40,43: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | qed:38,44: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
|
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| |
| Theorem | 2sb5ndVD 44899* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44559)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2sb5nd 44550 is 2sb5ndVD 44899 without virtual
deductions and was automatically derived from 2sb5ndVD 44899.
(Contributed by Alan Sare, 30-Apr-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 2:1: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 /
𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 3:: | ⊢ ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
| | 4:3: | ⊢ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣
/ 𝑦]𝜑)
| | 5:4: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]
∀𝑦[𝑣 / 𝑦]𝜑)
| | 6:: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑥𝑥 = 𝑦 )
| | 7:: | ⊢ (∀𝑦𝑦 = 𝑥 → ∀𝑥𝑥 = 𝑦)
| | 8:7: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑦𝑦 = 𝑥)
| | 9:6,8: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑦𝑦 = 𝑥 )
| | 10:9: | ⊢ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀
𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
| | 11:5,10: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 12:11: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 /
𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 13:: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 14:: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥𝑥 = 𝑦 )
| | 15:14: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (∀𝑥[𝑢 / 𝑥][
𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 16:13,15: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦
]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| | 17:16: | ⊢ (∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]
𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 19:12,17: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| | 20:19: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 /
𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 21:2,20: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)
↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 22:21: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 23:13: | ⊢ (∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 24:22,23: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 240:24: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑)))
| | 241:: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| | 242:241,240: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
| | 243:: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑))) ↔ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))))
| | 25:242,243: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([
𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
| | 26:: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| | qed:25,26: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢
/ 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
|
|
| ⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
| |
| Theorem | 2uasbanhVD 44900* |
The following User's Proof is a Virtual Deduction proof (see wvd1 44559)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2uasbanh 44551 is 2uasbanhVD 44900 without
virtual deductions and was automatically derived from 2uasbanhVD 44900.
(Contributed by Alan Sare, 31-May-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
| h1:: | ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | 100:1: | ⊢ (𝜒 → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | 2:100: | ⊢ ( 𝜒 ▶ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦
= 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) )
| | 3:2: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) )
| | 4:3: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣
) )
| | 5:4: | ⊢ ( 𝜒 ▶ (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)
)
| | 6:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑
↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) )
| | 7:3,6: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 )
| | 8:2: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜓) )
| | 9:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓
↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) )
| | 10:8,9: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓 )
| | 101:: | ⊢ ([𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑣 /
𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
| | 102:101: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)
↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
| | 103:: | ⊢ ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦
]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
| | 104:102,103: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)
↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
| | 11:7,10,104: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧
𝜓) )
| | 110:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑
∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) )
| | 12:11,110: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ (𝜑 ∧ 𝜓)) )
| | 120:12: | ⊢ (𝜒 → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣
) ∧ (𝜑 ∧ 𝜓)))
| | 13:1,120: | ⊢ ((∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) →
∃𝑥∃𝑦((𝑥 = 𝑢
∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)))
| | 14:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) )
| | 15:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| | 16:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ (𝜑 ∧ 𝜓) )
| | 17:16: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ 𝜑 )
| | 18:15,17: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| | 19:18: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 20:19: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑
∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 21:20: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| | 22:16: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ 𝜓 )
| | 23:15,22: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓) )
| | 24:23: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 25:24: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑
∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 26:25: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| | 27:21,26: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧
∃𝑥∃𝑦(
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| | qed:13,27: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧
∃𝑥∃𝑦(
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
|
|
| ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) ⇒ ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |