Home | Metamath
Proof Explorer Theorem List (p. 449 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 2leaddle2 44801 | If two real numbers are less than a third real number, the sum of the real numbers is less than twice the third real number. (Contributed by Alexander van der Vekens, 21-May-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶 ∧ 𝐵 < 𝐶) → (𝐴 + 𝐵) < (2 · 𝐶))) | ||
Theorem | ltnltne 44802 | Variant of trichotomy law for 'less than'. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴))) | ||
Theorem | p1lep2 44803 | A real number increasd by 1 is less than or equal to the number increased by 2. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ≤ (𝑁 + 2)) | ||
Theorem | ltsubsubaddltsub 44804 | If the result of subtracting two numbers is greater than a number, the result of adding one of these subtracted numbers to the number is less than the result of subtracting the other subtracted number only. (Contributed by Alexander van der Vekens, 9-Jun-2018.) |
⊢ ((𝐽 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝐽 < ((𝐿 − 𝑀) − 𝑁) ↔ (𝐽 + 𝑀) < (𝐿 − 𝑁))) | ||
Theorem | zm1nn 44805 | An integer minus 1 is positive under certain circumstances. (Contributed by Alexander van der Vekens, 9-Jun-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽 ∧ 𝐽 < ((𝐿 − 𝑁) − 1)) → (𝐿 − 1) ∈ ℕ)) | ||
Theorem | readdcnnred 44806 | The sum of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∉ ℝ) | ||
Theorem | resubcnnred 44807 | The difference of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∉ ℝ) | ||
Theorem | recnmulnred 44808 | The product of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∉ ℝ) | ||
Theorem | cndivrenred 44809 | The quotient of an imaginary number and a real number is not a real number. (Contributed by AV, 23-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐵 / 𝐴) ∉ ℝ) | ||
Theorem | sqrtnegnre 44810 | The square root of a negative number is not a real number. (Contributed by AV, 28-Feb-2023.) |
⊢ ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) ∉ ℝ) | ||
Theorem | nn0resubcl 44811 | Closure law for subtraction of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 − 𝐵) ∈ ℝ) | ||
Theorem | zgeltp1eq 44812 | If an integer is between another integer and its successor, the integer is equal to the other integer. (Contributed by AV, 30-May-2020.) |
⊢ ((𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 ≤ 𝐼 ∧ 𝐼 < (𝐴 + 1)) → 𝐼 = 𝐴)) | ||
Theorem | 1t10e1p1e11 44813 | 11 is 1 times 10 to the power of 1, plus 1. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
⊢ ;11 = ((1 · (;10↑1)) + 1) | ||
Theorem | deccarry 44814 | Add 1 to a 2 digit number with carry. This is a special case of decsucc 12487, but in closed form. As observed by ML, this theorem allows for carrying the 1 down multiple decimal constructors, so we can carry the 1 multiple times down a multi-digit number, e.g., by applying this theorem three times we get (;;999 + 1) = ;;;1000. (Contributed by AV, 4-Aug-2020.) (Revised by ML, 8-Aug-2020.) (Proof shortened by AV, 10-Sep-2021.) |
⊢ (𝐴 ∈ ℕ → (;𝐴9 + 1) = ;(𝐴 + 1)0) | ||
Theorem | eluzge0nn0 44815 | If an integer is greater than or equal to a nonnegative integer, then it is a nonnegative integer. (Contributed by Alexander van der Vekens, 27-Aug-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (0 ≤ 𝑀 → 𝑁 ∈ ℕ0)) | ||
Theorem | nltle2tri 44816 | Negated extended trichotomy law for 'less than' and 'less than or equal to'. (Contributed by AV, 18-Jul-2020.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ¬ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) | ||
Theorem | ssfz12 44817 | Subset relationship for finite sets of sequential integers. (Contributed by Alexander van der Vekens, 16-Mar-2018.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ≤ 𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
Theorem | elfz2z 44818 | Membership of an integer in a finite set of sequential integers starting at 0. (Contributed by Alexander van der Vekens, 25-May-2018.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | ||
Theorem | 2elfz3nn0 44819 | If there are two elements in a finite set of sequential integers starting at 0, these two elements as well as the upper bound are nonnegative integers. (Contributed by Alexander van der Vekens, 7-Apr-2018.) |
⊢ ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) | ||
Theorem | fz0addcom 44820 | The addition of two members of a finite set of sequential integers starting at 0 is commutative. (Contributed by Alexander van der Vekens, 22-May-2018.) (Revised by Alexander van der Vekens, 9-Jun-2018.) |
⊢ ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
Theorem | 2elfz2melfz 44821 | If the sum of two integers of a 0-based finite set of sequential integers is greater than the upper bound, the difference between one of the integers and the difference between the upper bound and the other integer is in the 0-based finite set of sequential integers with the first integer as upper bound. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by Alexander van der Vekens, 31-May-2018.) |
⊢ ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁 − 𝐴)) ∈ (0...𝐴))) | ||
Theorem | fz0addge0 44822 | The sum of two integers in 0-based finite sets of sequential integers is greater than or equal to zero. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ ((𝐴 ∈ (0...𝑀) ∧ 𝐵 ∈ (0...𝑁)) → 0 ≤ (𝐴 + 𝐵)) | ||
Theorem | elfzlble 44823 | Membership of an integer in a finite set of sequential integers with the integer as upper bound and a lower bound less than or equal to the integer. (Contributed by AV, 21-Oct-2018.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ((𝑁 − 𝑀)...𝑁)) | ||
Theorem | elfzelfzlble 44824 | Membership of an element of a finite set of sequential integers in a finite set of sequential integers with the same upper bound and a lower bound less than the upper bound. (Contributed by AV, 21-Oct-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑁 < (𝑀 + 𝐾)) → 𝐾 ∈ ((𝑁 − 𝑀)...𝑁)) | ||
Theorem | fzopred 44825 | Join a predecessor to the beginning of an open integer interval. Generalization of fzo0sn0fzo1 13485. (Contributed by AV, 14-Jul-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁))) | ||
Theorem | fzopredsuc 44826 | Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if 𝑁 = 𝑀 (then (𝑀...𝑁) = {𝑀} = ({𝑀} ∪ ∅) ∪ {𝑀}). (Contributed by AV, 14-Jul-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})) | ||
Theorem | 1fzopredsuc 44827 | Join 0 and a successor to the beginning and the end of an open integer interval starting at 1. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁})) | ||
Theorem | el1fzopredsuc 44828 | An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))) | ||
Theorem | subsubelfzo0 44829 | Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁 − 𝐴)) → (𝐼 − (𝑁 − 𝐴)) ∈ (0..^𝐴)) | ||
Theorem | fzoopth 44830 | A half-open integer range can represent an ordered pair, analogous to fzopth 13302. (Contributed by Alexander van der Vekens, 1-Jul-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽 ∧ 𝑁 = 𝐾))) | ||
Theorem | 2ffzoeq 44831* | Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018.) |
⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋 ∧ 𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹‘𝑖) = (𝑃‘𝑖)))) | ||
Theorem | m1mod0mod1 44832 | An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1)) | ||
Theorem | elmod2 44833 | An integer modulo 2 is either 0 or 1. (Contributed by AV, 24-May-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ {0, 1}) | ||
Theorem | smonoord 44834* | Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord 13762 (except that the case 𝑀 = 𝑁 must be excluded). Duplicate of monoords 42843? (Contributed by AV, 12-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) < (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁)) | ||
Theorem | fsummsndifre 44835* | A finite sum with one of its integer summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 ∈ ℝ) | ||
Theorem | fsumsplitsndif 44836* | Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) | ||
Theorem | fsummmodsndifre 44837* | A finite sum of summands modulo a positive number with one of its summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ) | ||
Theorem | fsummmodsnunz 44838* | A finite sum of summands modulo a positive number with an additional summand is an integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) | ||
Theorem | setsidel 44839 | The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) | ||
Theorem | setsnidel 44840 | The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) | ||
Theorem | setsv 44841 | The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | ||
According to Wikipedia ("Image (mathematics)", 17-Mar-2024, https://en.wikipedia.org/wiki/ImageSupport_(mathematics)): "... evaluating a given function 𝑓 at each element of a given subset 𝐴 of its domain produces a set, called the "image of 𝐴 under (or through) 𝑓". Similarly, the inverse image (or preimage) of a given subset 𝐵 of the codomain of 𝑓 is the set of all elements of the domain that map to the members of 𝐵." The preimage of a set 𝐵 under a function 𝑓 is often denoted as "f^-1 (B)", but in set.mm, the idiom (◡𝑓 “ 𝐵) is used. As a special case, the idiom for the preimage of a function value at 𝑋 under a function 𝐹 is (◡𝐹 “ {(𝐹‘𝑋)}) (according to Wikipedia, the preimage of a singleton is also called a "fiber"). We use the label fragment "preima" (as in mptpreima 6146) for theorems about preimages (sometimes, also "imacnv" is used as in fvimacnvi 6938), and "preimafv" (as in preimafvn0 44843) for theorems about preimages of a function value. In this section, 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} will be the set of all preimages of function values of a function 𝐹, that means 𝑆 ∈ 𝑃 is a preimage of a function value (see, for example, elsetpreimafv 44848): 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}). With the help of such a set, it is shown that every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function (see fundcmpsurinj 44872) by constructing a surjective function 𝑔:𝐴–onto→𝑃 and an injective function ℎ:𝑃–1-1→𝐵 so that 𝐹 = (ℎ ∘ 𝑔) ( see fundcmpsurinjpreimafv 44871). See also Wikipedia ("Surjective function", 17-Mar-2024, https://en.wikipedia.org/wiki/Surjective_function 44871 (section "Composition and decomposition"). This is different from the decomposition of 𝐹 into the surjective function 𝑔:𝐴–onto→(𝐹 “ 𝐴) (with (𝑔‘𝑥) = (𝐹‘𝑥) for 𝑥 ∈ 𝐴) and the injective function ℎ = ( I ↾ (𝐹 “ 𝐴)), ( see fundcmpsurinjimaid 44874), see also Wikipedia ("Bijection, injection and surjection", 17-Mar-2024, https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection 44874 (section "Properties"). Finally, it is shown that every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective, a bijective and an injective function (see fundcmpsurbijinj 44873), by showing that there is a bijection between the set of all preimages of values of a function and the range of the function (see imasetpreimafvbij 44869). From this, both variants of decompositions of a function into a surjective and an injective function can be derived: Let 𝐹 = ((𝐼 ∘ 𝐵) ∘ 𝑆) be a decomposition of a function into a surjective, a bijective and an injective function, then 𝐹 = (𝐽 ∘ 𝑆) with 𝐽 = (𝐼 ∘ 𝐵) (an injective function) is a decomposition into a surjective and an injective function corresponding to fundcmpsurinj 44872, and 𝐹 = (𝐼 ∘ 𝑂) with 𝑂 = (𝐵 ∘ 𝑆) (a surjective function) is a decomposition into a surjective and an injective function corresponding to fundcmpsurinjimaid 44874. | ||
Theorem | preimafvsnel 44842 | The preimage of a function value at 𝑋 contains 𝑋. (Contributed by AV, 7-Mar-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) | ||
Theorem | preimafvn0 44843 | The preimage of a function value is not empty. (Contributed by AV, 7-Mar-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ≠ ∅) | ||
Theorem | uniimafveqt 44844* | The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) | ||
Theorem | uniimaprimaeqfv 44845 | The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) | ||
Theorem | setpreimafvex 44846* | The class 𝑃 of all preimages of function values is a set. (Contributed by AV, 10-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑃 ∈ V) | ||
Theorem | elsetpreimafvb 44847* | The characterization of an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) | ||
Theorem | elsetpreimafv 44848* | An element of the class 𝑃 of all preimages of function values. (Contributed by AV, 8-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) | ||
Theorem | elsetpreimafvssdm 44849* | An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) | ||
Theorem | fvelsetpreimafv 44850* | There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) | ||
Theorem | preimafvelsetpreimafv 44851* | The preimage of a function value is an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) | ||
Theorem | preimafvsspwdm 44852* | The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) | ||
Theorem | 0nelsetpreimafv 44853* | The empty set is not an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 6-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) | ||
Theorem | elsetpreimafvbi 44854* | An element of the preimage of a function value is an element of the domain of the function with the same value as another element of the preimage. (Contributed by AV, 9-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) | ||
Theorem | elsetpreimafveqfv 44855* | The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐹‘𝑋) = (𝐹‘𝑌)) | ||
Theorem | eqfvelsetpreimafv 44856* | If an element of the domain of the function has the same function value as an element of the preimage of a function value, then it is an element of the same preimage. (Contributed by AV, 9-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)) → 𝑌 ∈ 𝑆)) | ||
Theorem | elsetpreimafvrab 44857* | An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → 𝑆 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)}) | ||
Theorem | imaelsetpreimafv 44858* | The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑋)}) | ||
Theorem | uniimaelsetpreimafv 44859* | The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) | ||
Theorem | elsetpreimafveq 44860* | If two preimages of function values contain elements with identical function values, then both preimages are equal. (Contributed by AV, 8-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑆 = 𝑅)) | ||
Theorem | fundcmpsurinjlem1 44861* | Lemma 1 for fundcmpsurinj 44872. (Contributed by AV, 4-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) ⇒ ⊢ ran 𝐺 = 𝑃 | ||
Theorem | fundcmpsurinjlem2 44862* | Lemma 2 for fundcmpsurinj 44872. (Contributed by AV, 4-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) | ||
Theorem | fundcmpsurinjlem3 44863* | Lemma 3 for fundcmpsurinj 44872. (Contributed by AV, 3-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐻‘𝑋) = ∪ (𝐹 “ 𝑋)) | ||
Theorem | imasetpreimafvbijlemf 44864* | Lemma for imasetpreimafvbij 44869: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) | ||
Theorem | imasetpreimafvbijlemfv 44865* | Lemma for imasetpreimafvbij 44869: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) | ||
Theorem | imasetpreimafvbijlemfv1 44866* | Lemma for imasetpreimafvbij 44869: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦)) | ||
Theorem | imasetpreimafvbijlemf1 44867* | Lemma for imasetpreimafvbij 44869: the mapping 𝐻 is an injective function into the range of function 𝐹. (Contributed by AV, 9-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃–1-1→(𝐹 “ 𝐴)) | ||
Theorem | imasetpreimafvbijlemfo 44868* | Lemma for imasetpreimafvbij 44869: the mapping 𝐻 is a function onto the range of function 𝐹. (Contributed by AV, 22-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–onto→(𝐹 “ 𝐴)) | ||
Theorem | imasetpreimafvbij 44869* | The mapping 𝐻 is a bijective function betwen the set 𝑃 of all preimages of values of function 𝐹 and the range of 𝐹. (Contributed by AV, 22-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–1-1-onto→(𝐹 “ 𝐴)) | ||
Theorem | fundcmpsurbijinjpreimafv 44870* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto 𝑃, a bijective function from 𝑃 and an injective function into the codomain of 𝐹. (Contributed by AV, 22-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→𝑃 ∧ ℎ:𝑃–1-1-onto→(𝐹 “ 𝐴) ∧ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) | ||
Theorem | fundcmpsurinjpreimafv 44871* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto 𝑃 and an injective function from 𝑃. (Contributed by AV, 12-Mar-2024.) (Proof shortened by AV, 22-Mar-2024.) |
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ(𝑔:𝐴–onto→𝑃 ∧ ℎ:𝑃–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
Theorem | fundcmpsurinj 44872* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
Theorem | fundcmpsurbijinj 44873* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective, a bijective and an injective function. (Contributed by AV, 23-Mar-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑖∃𝑝∃𝑞((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) | ||
Theorem | fundcmpsurinjimaid 44874* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto the image (𝐹 “ 𝐴) of the domain of 𝐹 and an injective function from the image (𝐹 “ 𝐴). (Contributed by AV, 17-Mar-2024.) |
⊢ 𝐼 = (𝐹 “ 𝐴) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) & ⊢ 𝐻 = ( I ↾ 𝐼) ⇒ ⊢ (𝐹:𝐴⟶𝐵 → (𝐺:𝐴–onto→𝐼 ∧ 𝐻:𝐼–1-1→𝐵 ∧ 𝐹 = (𝐻 ∘ 𝐺))) | ||
Theorem | fundcmpsurinjALT 44875* | Alternate proof of fundcmpsurinj 44872, based on fundcmpsurinjimaid 44874: Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
Based on the theorems of the fourierdlem* series of GS's mathbox. | ||
Syntax | ciccp 44876 | Extend class notation with the partitions of a closed interval of extended reals. |
class RePart | ||
Definition | df-iccp 44877* | Define partitions of a closed interval of extended reals. Such partitions are finite increasing sequences of extended reals. (Contributed by AV, 8-Jul-2020.) |
⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | ||
Theorem | iccpval 44878* | Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | ||
Theorem | iccpart 44879* | A special partition. Corresponds to fourierdlem2 43657 in GS's mathbox. (Contributed by AV, 9-Jul-2020.) |
⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | ||
Theorem | iccpartimp 44880 | Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) | ||
Theorem | iccpartres 44881 | The restriction of a partition is a partition. (Contributed by AV, 16-Jul-2020.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘(𝑀 + 1))) → (𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀)) | ||
Theorem | iccpartxr 44882 | If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) | ||
Theorem | iccpartgtprec 44883 | If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) | ||
Theorem | iccpartipre 44884 | If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) | ||
Theorem | iccpartiltu 44885* | If there is a partition, then all intermediate points are strictly less than the upper bound. (Contributed by AV, 12-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) | ||
Theorem | iccpartigtl 44886* | If there is a partition, then all intermediate points are strictly greater than the lower bound. (Contributed by AV, 12-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖)) | ||
Theorem | iccpartlt 44887 | If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 43666 in GS's mathbox. (Contributed by AV, 12-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) | ||
Theorem | iccpartltu 44888* | If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) | ||
Theorem | iccpartgtl 44889* | If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) | ||
Theorem | iccpartgt 44890* | If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))) | ||
Theorem | iccpartleu 44891* | If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) | ||
Theorem | iccpartgel 44892* | If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑖)) | ||
Theorem | iccpartrn 44893 | If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃‘𝑀))) | ||
Theorem | iccpartf 44894 | The range of the partition is between its starting point and its ending point. Corresponds to fourierdlem15 43670 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → 𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃‘𝑀))) | ||
Theorem | iccpartel 44895 | If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ (0...𝑀)) → (𝑃‘𝐼) ∈ ((𝑃‘0)[,](𝑃‘𝑀))) | ||
Theorem | iccelpart 44896* | An element of any partitioned half-open interval of extended reals is an element of a part of this partition. (Contributed by AV, 18-Jul-2020.) |
⊢ (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) | ||
Theorem | iccpartiun 44897* | A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ((𝑃‘0)[,)(𝑃‘𝑀)) = ∪ 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
Theorem | icceuelpartlem 44898 | Lemma for icceuelpart 44899. (Contributed by AV, 19-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃‘𝐽)))) | ||
Theorem | icceuelpart 44899* | An element of a partitioned half-open interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
Theorem | iccpartdisj 44900* | The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → Disj 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |