![]() |
Metamath
Proof Explorer Theorem List (p. 449 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30171) |
![]() (30172-31694) |
![]() (31695-47852) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | stirlinglem12 44801* | The sequence π΅ is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
β’ π΄ = (π β β β¦ ((!βπ) / ((ββ(2 Β· π)) Β· ((π / e)βπ)))) & β’ π΅ = (π β β β¦ (logβ(π΄βπ))) & β’ πΉ = (π β β β¦ (1 / (π Β· (π + 1)))) β β’ (π β β β ((π΅β1) β (1 / 4)) β€ (π΅βπ)) | ||
Theorem | stirlinglem13 44802* | π΅ is decreasing and has a lower bound, then it converges. Since π΅ is logπ΄, in another theorem it is proven that π΄ converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
β’ π΄ = (π β β β¦ ((!βπ) / ((ββ(2 Β· π)) Β· ((π / e)βπ)))) & β’ π΅ = (π β β β¦ (logβ(π΄βπ))) β β’ βπ β β π΅ β π | ||
Theorem | stirlinglem14 44803* | The sequence π΄ converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for Ο& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
β’ π΄ = (π β β β¦ ((!βπ) / ((ββ(2 Β· π)) Β· ((π / e)βπ)))) & β’ π΅ = (π β β β¦ (logβ(π΄βπ))) β β’ βπ β β+ π΄ β π | ||
Theorem | stirlinglem15 44804* | The Stirling's formula is proven using a number of local definitions. The main theorem stirling 44805 will use this final lemma, but it will not expose the local definitions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
β’ β²ππ & β’ π = (π β β0 β¦ ((ββ((2 Β· Ο) Β· π)) Β· ((π / e)βπ))) & β’ π΄ = (π β β β¦ ((!βπ) / ((ββ(2 Β· π)) Β· ((π / e)βπ)))) & β’ π· = (π β β β¦ (π΄β(2 Β· π))) & β’ πΈ = (π β β β¦ ((ββ(2 Β· π)) Β· ((π / e)βπ))) & β’ π = (π β β β¦ ((((2β(4 Β· π)) Β· ((!βπ)β4)) / ((!β(2 Β· π))β2)) / ((2 Β· π) + 1))) & β’ πΉ = (π β β β¦ (((π΄βπ)β4) / ((π·βπ)β2))) & β’ π» = (π β β β¦ ((πβ2) / (π Β· ((2 Β· π) + 1)))) & β’ (π β πΆ β β+) & β’ (π β π΄ β πΆ) β β’ (π β (π β β β¦ ((!βπ) / (πβπ))) β 1) | ||
Theorem | stirling 44805 | Stirling's approximation formula for π factorial. The proof follows two major steps: first it is proven that π and π factorial are asymptotically equivalent, up to an unknown constant. Then, using Wallis' formula for Ο it is proven that the unknown constant is the square root of Ο and then the exact Stirling's formula is established. This is Metamath 100 proof #90. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
β’ π = (π β β0 β¦ ((ββ((2 Β· Ο) Β· π)) Β· ((π / e)βπ))) β β’ (π β β β¦ ((!βπ) / (πβπ))) β 1 | ||
Theorem | stirlingr 44806 | Stirling's approximation formula for π factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling 44805 is proven for convergence in the topology of complex numbers. The variable π is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
β’ π = (π β β0 β¦ ((ββ((2 Β· Ο) Β· π)) Β· ((π / e)βπ))) & β’ π = (βπ‘β(topGenβran (,))) β β’ (π β β β¦ ((!βπ) / (πβπ)))π 1 | ||
Theorem | dirkerval 44807* | The Nth Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π β β β¦ if((π mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π )) / ((2 Β· Ο) Β· (sinβ(π / 2))))))) β β’ (π β β β (π·βπ) = (π β β β¦ if((π mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π )) / ((2 Β· Ο) Β· (sinβ(π / 2))))))) | ||
Theorem | dirker2re 44808 | The Dirichlet Kernel value is a real if the argument is not a multiple of Ο . (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (((π β β β§ π β β) β§ Β¬ (π mod (2 Β· Ο)) = 0) β ((sinβ((π + (1 / 2)) Β· π)) / ((2 Β· Ο) Β· (sinβ(π / 2)))) β β) | ||
Theorem | dirkerdenne0 44809 | The Dirichlet Kernel denominator is never 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ ((π β β β§ Β¬ (π mod (2 Β· Ο)) = 0) β ((2 Β· Ο) Β· (sinβ(π / 2))) β 0) | ||
Theorem | dirkerval2 44810* | The Nth Dirichlet Kernel evaluated at a specific point π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π β β β¦ if((π mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π )) / ((2 Β· Ο) Β· (sinβ(π / 2))))))) β β’ ((π β β β§ π β β) β ((π·βπ)βπ) = if((π mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π)) / ((2 Β· Ο) Β· (sinβ(π / 2)))))) | ||
Theorem | dirkerre 44811* | The Dirichlet Kernel at any point evaluates to a real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π β β β¦ if((π mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π )) / ((2 Β· Ο) Β· (sinβ(π / 2))))))) β β’ ((π β β β§ π β β) β ((π·βπ)βπ) β β) | ||
Theorem | dirkerper 44812* | the Dirichlet Kernel has period 2Ο. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π¦ β β β¦ if((π¦ mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π¦)) / ((2 Β· Ο) Β· (sinβ(π¦ / 2))))))) & β’ π = (2 Β· Ο) β β’ ((π β β β§ π₯ β β) β ((π·βπ)β(π₯ + π)) = ((π·βπ)βπ₯)) | ||
Theorem | dirkerf 44813* | For any natural number π, the Dirichlet Kernel (π·βπ) is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π¦ β β β¦ if((π¦ mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π¦)) / ((2 Β· Ο) Β· (sinβ(π¦ / 2))))))) β β’ (π β β β (π·βπ):ββΆβ) | ||
Theorem | dirkertrigeqlem1 44814* | Sum of an even number of alternating cos values. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (πΎ β β β Ξ£π β (1...(2 Β· πΎ))(cosβ(π Β· Ο)) = 0) | ||
Theorem | dirkertrigeqlem2 44815* | Trigonomic equality lemma for the Dirichlet Kernel trigonomic equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β (sinβπ΄) β 0) & β’ (π β π β β) β β’ (π β (((1 / 2) + Ξ£π β (1...π)(cosβ(π Β· π΄))) / Ο) = ((sinβ((π + (1 / 2)) Β· π΄)) / ((2 Β· Ο) Β· (sinβ(π΄ / 2))))) | ||
Theorem | dirkertrigeqlem3 44816* | Trigonometric equality lemma for the Dirichlet Kernel trigonometric equality. Here we handle the case for an angle that's an odd multiple of Ο. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π β β) & β’ (π β πΎ β β€) & β’ π΄ = (((2 Β· πΎ) + 1) Β· Ο) β β’ (π β (((1 / 2) + Ξ£π β (1...π)(cosβ(π Β· π΄))) / Ο) = ((sinβ((π + (1 / 2)) Β· π΄)) / ((2 Β· Ο) Β· (sinβ(π΄ / 2))))) | ||
Theorem | dirkertrigeq 44817* | Trigonometric equality for the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π β β β¦ if((π mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π )) / ((2 Β· Ο) Β· (sinβ(π / 2))))))) & β’ (π β π β β) & β’ πΉ = (π·βπ) & β’ π» = (π β β β¦ (((1 / 2) + Ξ£π β (1...π)(cosβ(π Β· π ))) / Ο)) β β’ (π β πΉ = π») | ||
Theorem | dirkeritg 44818* | The definite integral of the Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π₯ β β β¦ if((π₯ mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π₯)) / ((2 Β· Ο) Β· (sinβ(π₯ / 2))))))) & β’ (π β π β β) & β’ πΉ = (π·βπ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ πΊ = (π₯ β (π΄[,]π΅) β¦ (((π₯ / 2) + Ξ£π β (1...π)((sinβ(π Β· π₯)) / π)) / Ο)) β β’ (π β β«(π΄(,)π΅)(πΉβπ₯) dπ₯ = ((πΊβπ΅) β (πΊβπ΄))) | ||
Theorem | dirkercncflem1 44819* | If π is a multiple of Ο then it belongs to an open inerval (π΄(,)π΅) such that for any other point π¦ in the interval, cos y/2 and sin y/2 are nonzero. Such an interval is needed to apply De L'Hopital theorem. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π΄ = (π β Ο) & β’ π΅ = (π + Ο) & β’ (π β π β β) & β’ (π β (π mod (2 Β· Ο)) = 0) β β’ (π β (π β (π΄(,)π΅) β§ βπ¦ β ((π΄(,)π΅) β {π})((sinβ(π¦ / 2)) β 0 β§ (cosβ(π¦ / 2)) β 0))) | ||
Theorem | dirkercncflem2 44820* | Lemma used to prove that the Dirichlet Kernel is continuous at π points that are multiples of (2 Β· Ο). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π¦ β β β¦ if((π¦ mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π¦)) / ((2 Β· Ο) Β· (sinβ(π¦ / 2))))))) & β’ πΉ = (π¦ β ((π΄(,)π΅) β {π}) β¦ (sinβ((π + (1 / 2)) Β· π¦))) & β’ πΊ = (π¦ β ((π΄(,)π΅) β {π}) β¦ ((2 Β· Ο) Β· (sinβ(π¦ / 2)))) & β’ ((π β§ π¦ β ((π΄(,)π΅) β {π})) β (sinβ(π¦ / 2)) β 0) & β’ π» = (π¦ β ((π΄(,)π΅) β {π}) β¦ ((π + (1 / 2)) Β· (cosβ((π + (1 / 2)) Β· π¦)))) & β’ πΌ = (π¦ β ((π΄(,)π΅) β {π}) β¦ (Ο Β· (cosβ(π¦ / 2)))) & β’ πΏ = (π€ β (π΄(,)π΅) β¦ (((π + (1 / 2)) Β· (cosβ((π + (1 / 2)) Β· π€))) / (Ο Β· (cosβ(π€ / 2))))) & β’ (π β π β β) & β’ (π β π β (π΄(,)π΅)) & β’ (π β (π mod (2 Β· Ο)) = 0) & β’ ((π β§ π¦ β ((π΄(,)π΅) β {π})) β (cosβ(π¦ / 2)) β 0) β β’ (π β ((π·βπ)βπ) β (((π·βπ) βΎ ((π΄(,)π΅) β {π})) limβ π)) | ||
Theorem | dirkercncflem3 44821* | The Dirichlet Kernel is continuous at π points that are multiples of (2 Β· Ο). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π¦ β β β¦ if((π¦ mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π¦)) / ((2 Β· Ο) Β· (sinβ(π¦ / 2))))))) & β’ π΄ = (π β Ο) & β’ π΅ = (π + Ο) & β’ πΉ = (π¦ β (π΄(,)π΅) β¦ ((sinβ((π + (1 / 2)) Β· π¦)) / ((2 Β· Ο) Β· (sinβ(π¦ / 2))))) & β’ πΊ = (π¦ β (π΄(,)π΅) β¦ ((2 Β· Ο) Β· (sinβ(π¦ / 2)))) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (π mod (2 Β· Ο)) = 0) β β’ (π β ((π·βπ)βπ) β ((π·βπ) limβ π)) | ||
Theorem | dirkercncflem4 44822* | The Dirichlet Kernel is continuos at points that are not multiple of 2 Ο . This is the easier condition, for the proof of the continuity of the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π¦ β β β¦ if((π¦ mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π¦)) / ((2 Β· Ο) Β· (sinβ(π¦ / 2))))))) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (π mod (2 Β· Ο)) β 0) & β’ π΄ = (ββ(π / (2 Β· Ο))) & β’ π΅ = (π΄ + 1) & β’ πΆ = (π΄ Β· (2 Β· Ο)) & β’ πΈ = (π΅ Β· (2 Β· Ο)) β β’ (π β (π·βπ) β (((topGenβran (,)) CnP (topGenβran (,)))βπ)) | ||
Theorem | dirkercncf 44823* | For any natural number π, the Dirichlet Kernel (π·βπ) is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π· = (π β β β¦ (π¦ β β β¦ if((π¦ mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π¦)) / ((2 Β· Ο) Β· (sinβ(π¦ / 2))))))) β β’ (π β β β (π·βπ) β (ββcnββ)) | ||
Theorem | fourierdlem1 44824 | A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β*) & β’ (π β π΅ β β*) & β’ (π β π:(0...π)βΆ(π΄[,]π΅)) & β’ (π β πΌ β (0..^π)) & β’ (π β π β ((πβπΌ)[,](πβ(πΌ + 1)))) β β’ (π β π β (π΄[,]π΅)) | ||
Theorem | fourierdlem2 44825* | Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) β β’ (π β β β (π β (πβπ) β (π β (β βm (0...π)) β§ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))))) | ||
Theorem | fourierdlem3 44826* | Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π β β β¦ {π β ((-Ο[,]Ο) βm (0...π)) β£ (((πβ0) = -Ο β§ (πβπ) = Ο) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) β β’ (π β β β (π β (πβπ) β (π β ((-Ο[,]Ο) βm (0...π)) β§ (((πβ0) = -Ο β§ (πβπ) = Ο) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))))) | ||
Theorem | fourierdlem4 44827* | πΈ is a function that maps any point to a periodic corresponding point in (π΄, π΅]. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ π = (π΅ β π΄) & β’ πΈ = (π₯ β β β¦ (π₯ + ((ββ((π΅ β π₯) / π)) Β· π))) β β’ (π β πΈ:ββΆ(π΄(,]π΅)) | ||
Theorem | fourierdlem5 44828* | π is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π₯ β (-Ο[,]Ο) β¦ (sinβ((π + (1 / 2)) Β· π₯))) β β’ (π β β β π:(-Ο[,]Ο)βΆβ) | ||
Theorem | fourierdlem6 44829 | π is in the periodic partition, when the considered interval is centered at π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ π = (π΅ β π΄) & β’ (π β π β β) & β’ (π β πΌ β β€) & β’ (π β π½ β β€) & β’ (π β πΌ < π½) & β’ (π β (π + (πΌ Β· π)) β (π΄[,]π΅)) & β’ (π β (π + (π½ Β· π)) β (π΄[,]π΅)) β β’ (π β π½ = (πΌ + 1)) | ||
Theorem | fourierdlem7 44830* | The difference between the periodic sawtooth function and the identity function is decreasing. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ π = (π΅ β π΄) & β’ πΈ = (π₯ β β β¦ (π₯ + ((ββ((π΅ β π₯) / π)) Β· π))) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β€ π) β β’ (π β ((πΈβπ) β π) β€ ((πΈβπ) β π)) | ||
Theorem | fourierdlem8 44831 | A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β*) & β’ (π β π΅ β β*) & β’ (π β π:(0...π)βΆ(π΄[,]π΅)) & β’ (π β πΌ β (0..^π)) β β’ (π β ((πβπΌ)[,](πβ(πΌ + 1))) β (π΄[,]π΅)) | ||
Theorem | fourierdlem9 44832* | π» is a complex function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ π» = (π β (-Ο[,]Ο) β¦ if(π = 0, 0, (((πΉβ(π + π )) β if(0 < π , π, π)) / π ))) β β’ (π β π»:(-Ο[,]Ο)βΆβ) | ||
Theorem | fourierdlem10 44833 | Condition on the bounds of a nonempty subinterval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β πΆ < π·) & β’ (π β (πΆ(,)π·) β (π΄(,)π΅)) β β’ (π β (π΄ β€ πΆ β§ π· β€ π΅)) | ||
Theorem | fourierdlem11 44834* | If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) β β’ (π β (π΄ β β β§ π΅ β β β§ π΄ < π΅)) | ||
Theorem | fourierdlem12 44835* | A point of a partition is not an element of any open interval determined by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ (π β π β ran π) β β’ ((π β§ π β (0..^π)) β Β¬ π β ((πβπ)(,)(πβ(π + 1)))) | ||
Theorem | fourierdlem13 44836* | Value of π in terms of value of π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = (π΄ + π) β§ (πβπ) = (π΅ + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ (π β πΌ β (0...π)) & β’ π = (π β (0...π) β¦ ((πβπ) β π)) β β’ (π β ((πβπΌ) = ((πβπΌ) β π) β§ (πβπΌ) = (π + (πβπΌ)))) | ||
Theorem | fourierdlem14 44837* | Given the partition π, π is the partition shifted to the left by π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = (π΄ + π) β§ (πβπ) = (π΅ + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ π = (π β (0...π) β¦ ((πβπ) β π)) β β’ (π β π β (πβπ)) | ||
Theorem | fourierdlem15 44838* | The range of the partition is between its starting point and its ending point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) β β’ (π β π:(0...π)βΆ(π΄[,]π΅)) | ||
Theorem | fourierdlem16 44839* | The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ πΆ = (-Ο(,)Ο) & β’ (π β (πΉ βΎ πΆ) β πΏ1) & β’ π΄ = (π β β0 β¦ (β«πΆ((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) & β’ (π β π β β0) β β’ (π β (((π΄βπ) β β β§ (π₯ β πΆ β¦ (πΉβπ₯)) β πΏ1) β§ β«πΆ((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ β β)) | ||
Theorem | fourierdlem17 44840* | The defined πΏ is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ πΏ = (π₯ β (π΄(,]π΅) β¦ if(π₯ = π΅, π΄, π₯)) β β’ (π β πΏ:(π΄(,]π΅)βΆ(π΄[,]π΅)) | ||
Theorem | fourierdlem18 44841* | The function π is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π β β) & β’ π = (π β (-Ο[,]Ο) β¦ (sinβ((π + (1 / 2)) Β· π ))) β β’ (π β π β ((-Ο[,]Ο)βcnββ)) | ||
Theorem | fourierdlem19 44842* | If two elements of π· have the same periodic image in (π΄(,]π΅) then they are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β π β β) & β’ π· = {π¦ β ((π΄ + π)(,](π΅ + π)) β£ βπ β β€ (π¦ + (π Β· π)) β πΆ} & β’ π = (π΅ β π΄) & β’ πΈ = (π₯ β β β¦ (π₯ + ((ββ((π΅ β π₯) / π)) Β· π))) & β’ (π β π β π·) & β’ (π β π β π·) & β’ (π β (πΈβπ) = (πΈβπ)) β β’ (π β Β¬ π < π) | ||
Theorem | fourierdlem20 44843* | Every interval in the partition π is included in an interval of the partition π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π β β) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β π:(0...π)βΆβ) & β’ (π β (πβ0) β€ π΄) & β’ (π β π΅ β€ (πβπ)) & β’ (π β π½ β (0..^π)) & β’ π = ({π΄, π΅} βͺ (ran π β© (π΄(,)π΅))) & β’ (π β π Isom < , < ((0...π), π)) & β’ πΌ = sup({π β (0..^π) β£ (πβπ) β€ (πβπ½)}, β, < ) β β’ (π β βπ β (0..^π)((πβπ½)(,)(πβ(π½ + 1))) β ((πβπ)(,)(πβ(π + 1)))) | ||
Theorem | fourierdlem21 44844* | The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ πΆ = (-Ο(,)Ο) & β’ (π β (πΉ βΎ πΆ) β πΏ1) & β’ π΅ = (π β β β¦ (β«πΆ((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) & β’ (π β π β β) β β’ (π β (((π΅βπ) β β β§ (π₯ β πΆ β¦ ((πΉβπ₯) Β· (sinβ(π Β· π₯)))) β πΏ1) β§ β«πΆ((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ β β)) | ||
Theorem | fourierdlem22 44845* | The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ πΆ = (-Ο(,)Ο) & β’ (π β (πΉ βΎ πΆ) β πΏ1) & β’ π΄ = (π β β0 β¦ (β«πΆ((πΉβπ₯) Β· (cosβ(π Β· π₯))) dπ₯ / Ο)) & β’ π΅ = (π β β β¦ (β«πΆ((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ / Ο)) β β’ (π β ((π β β0 β (π΄βπ) β β) β§ (π β β β (π΅βπ) β β))) | ||
Theorem | fourierdlem23 44846* | If πΉ is continuous and π is constant, then (πΉβ(π + π )) is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β πΉ β (π΄βcnββ)) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ ((π β§ π β π΅) β (π + π ) β π΄) β β’ (π β (π β π΅ β¦ (πΉβ(π + π ))) β (π΅βcnββ)) | ||
Theorem | fourierdlem24 44847 | A sufficient condition for module being nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π΄ β ((-Ο[,]Ο) β {0}) β (π΄ mod (2 Β· Ο)) β 0) | ||
Theorem | fourierdlem25 44848* | If πΆ is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π β β) & β’ (π β π:(0...π)βΆβ) & β’ (π β πΆ β ((πβ0)[,](πβπ))) & β’ (π β Β¬ πΆ β ran π) & β’ πΌ = sup({π β (0..^π) β£ (πβπ) < πΆ}, β, < ) β β’ (π β βπ β (0..^π)πΆ β ((πβπ)(,)(πβ(π + 1)))) | ||
Theorem | fourierdlem26 44849* | Periodic image of a point π that's in the period that begins with the point π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ π = (π΅ β π΄) & β’ πΈ = (π₯ β β β¦ (π₯ + ((ββ((π΅ β π₯) / π)) Β· π))) & β’ (π β π β β) & β’ (π β (πΈβπ) = π΅) & β’ (π β π β (π(,](π + π))) β β’ (π β (πΈβπ) = (π΄ + (π β π))) | ||
Theorem | fourierdlem27 44850 | A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β*) & β’ (π β π΅ β β*) & β’ (π β π:(0...π)βΆ(π΄[,]π΅)) & β’ (π β πΌ β (0..^π)) β β’ (π β ((πβπΌ)(,)(πβ(πΌ + 1))) β (π΄(,)π΅)) | ||
Theorem | fourierdlem28 44851* | Derivative of (πΉβ(π + π )). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ π· = (β D (πΉ βΎ ((π + π΄)(,)(π + π΅)))) & β’ (π β π·:((π + π΄)(,)(π + π΅))βΆβ) β β’ (π β (β D (π β (π΄(,)π΅) β¦ (πΉβ(π + π )))) = (π β (π΄(,)π΅) β¦ (π·β(π + π )))) | ||
Theorem | fourierdlem29 44852* | Explicit function value for πΎ applied to π΄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ πΎ = (π β (-Ο[,]Ο) β¦ if(π = 0, 1, (π / (2 Β· (sinβ(π / 2)))))) β β’ (π΄ β (-Ο[,]Ο) β (πΎβπ΄) = if(π΄ = 0, 1, (π΄ / (2 Β· (sinβ(π΄ / 2)))))) | ||
Theorem | fourierdlem30 44853* | Sum of three small pieces is less than Ξ΅. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β (π₯ β πΌ β¦ (πΉ Β· -πΊ)) β πΏ1) & β’ ((π β§ π₯ β πΌ) β πΉ β β) & β’ ((π β§ π₯ β πΌ) β πΊ β β) & β’ (π β π΄ β β) & β’ π = (absβπ΄) & β’ (π β πΆ β β) & β’ π = (absβπΆ) & β’ π = (absββ«πΌ(πΉ Β· -πΊ) dπ₯) & β’ (π β πΈ β β+) & β’ (π β π β β) & β’ (π β ((((π + π) + π) / πΈ) + 1) β€ π ) & β’ (π β π΅ β β) & β’ (π β (absβπ΅) β€ 1) & β’ (π β π· β β) & β’ (π β (absβπ·) β€ 1) β β’ (π β (absβ(((π΄ Β· -(π΅ / π )) β (πΆ Β· -(π· / π ))) β β«πΌ(πΉ Β· -(πΊ / π )) dπ₯)) < πΈ) | ||
Theorem | fourierdlem31 44854* | If π΄ is finite and for any element in π΄ there is a number π such that a property holds for all numbers larger than π, then there is a number π such that the property holds for all numbers larger than π and for all elements in π΄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.) |
β’ β²ππ & β’ β²ππ & β’ β²ππ & β’ (π β π΄ β Fin) & β’ (π β βπ β π΄ βπ β β βπ β (π(,)+β)π) & β’ π = {π β β β£ βπ β (π(,)+β)π} & β’ π = (π β π΄ β¦ inf(π, β, < )) & β’ π = sup(ran π, β, < ) β β’ (π β βπ β β βπ β (π(,)+β)βπ β π΄ π) | ||
Theorem | fourierdlem32 44855 | Limit of a continuous function on an open subinterval. Lower bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ β ((π΄(,)π΅)βcnββ)) & β’ (π β π β (πΉ limβ π΄)) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β πΆ < π·) & β’ (π β (πΆ(,)π·) β (π΄(,)π΅)) & β’ π = if(πΆ = π΄, π , (πΉβπΆ)) & β’ π½ = ((TopOpenββfld) βΎt (π΄[,)π΅)) β β’ (π β π β ((πΉ βΎ (πΆ(,)π·)) limβ πΆ)) | ||
Theorem | fourierdlem33 44856 | Limit of a continuous function on an open subinterval. Upper bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ β ((π΄(,)π΅)βcnββ)) & β’ (π β πΏ β (πΉ limβ π΅)) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β πΆ < π·) & β’ (π β (πΆ(,)π·) β (π΄(,)π΅)) & β’ π = if(π· = π΅, πΏ, (πΉβπ·)) & β’ π½ = ((TopOpenββfld) βΎt ((π΄(,)π΅) βͺ {π΅})) β β’ (π β π β ((πΉ βΎ (πΆ(,)π·)) limβ π·)) | ||
Theorem | fourierdlem34 44857* | A partition is one to one. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) β β’ (π β π:(0...π)β1-1ββ) | ||
Theorem | fourierdlem35 44858 | There is a single point in (π΄(,]π΅) that's distant from π a multiple integer of π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ π = (π΅ β π΄) & β’ (π β π β β) & β’ (π β πΌ β β€) & β’ (π β π½ β β€) & β’ (π β (π + (πΌ Β· π)) β (π΄(,]π΅)) & β’ (π β (π + (π½ Β· π)) β (π΄(,]π΅)) β β’ (π β πΌ = π½) | ||
Theorem | fourierdlem36 44859* | πΉ is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β Fin) & β’ (π β π΄ β β) & β’ πΉ = (β©ππ Isom < , < ((0...π), π΄)) & β’ π = ((β―βπ΄) β 1) β β’ (π β πΉ Isom < , < ((0...π), π΄)) | ||
Theorem | fourierdlem37 44860* | πΌ is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ π = (π΅ β π΄) & β’ πΈ = (π₯ β β β¦ (π₯ + ((ββ((π΅ β π₯) / π)) Β· π))) & β’ πΏ = (π¦ β (π΄(,]π΅) β¦ if(π¦ = π΅, π΄, π¦)) & β’ πΌ = (π₯ β β β¦ sup({π β (0..^π) β£ (πβπ) β€ (πΏβ(πΈβπ₯))}, β, < )) β β’ (π β (πΌ:ββΆ(0..^π) β§ (π₯ β β β sup({π β (0..^π) β£ (πβπ) β€ (πΏβ(πΈβπ₯))}, β, < ) β {π β (0..^π) β£ (πβπ) β€ (πΏβ(πΈβπ₯))}))) | ||
Theorem | fourierdlem38 44861* | The function πΉ is continuous on every interval induced by the partition π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ β (dom πΉβcnββ)) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = -Ο β§ (πβπ) = Ο) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ π» = (π΄ βͺ ((-Ο[,]Ο) β dom πΉ)) & β’ (π β ran π = π») β β’ ((π β§ π β (0..^π)) β (πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) | ||
Theorem | fourierdlem39 44862* | Integration by parts of β«(π΄(,)π΅)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ πΊ = (β D πΉ) & β’ (π β πΊ β ((π΄(,)π΅)βcnββ)) & β’ (π β βπ¦ β β βπ₯ β (π΄(,)π΅)(absβ(πΊβπ₯)) β€ π¦) & β’ (π β π β β+) β β’ (π β β«(π΄(,)π΅)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯ = ((((πΉβπ΅) Β· -((cosβ(π Β· π΅)) / π )) β ((πΉβπ΄) Β· -((cosβ(π Β· π΄)) / π ))) β β«(π΄(,)π΅)((πΊβπ₯) Β· -((cosβ(π Β· π₯)) / π )) dπ₯)) | ||
Theorem | fourierdlem40 44863* | π» is a continuous function on any partition interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π΄ β (-Ο[,]Ο)) & β’ (π β π΅ β (-Ο[,]Ο)) & β’ (π β π β β) & β’ (π β Β¬ 0 β (π΄(,)π΅)) & β’ (π β (πΉ βΎ ((π΄ + π)(,)(π΅ + π))) β (((π΄ + π)(,)(π΅ + π))βcnββ)) & β’ (π β π β β) & β’ (π β π β β) & β’ π» = (π β (-Ο[,]Ο) β¦ if(π = 0, 0, (((πΉβ(π + π )) β if(0 < π , π, π)) / π ))) β β’ (π β (π» βΎ (π΄(,)π΅)) β ((π΄(,)π΅)βcnββ)) | ||
Theorem | fourierdlem41 44864* | Lemma used to prove that every real is a limit point for the domain of the derivative of the periodic function to be approximated. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ π = (π΅ β π΄) & β’ ((π β§ π₯ β π· β§ π β β€) β (π₯ + (π Β· π)) β π·) & β’ (π β π β β) & β’ π = (π₯ β β β¦ ((ββ((π΅ β π₯) / π)) Β· π)) & β’ πΈ = (π₯ β β β¦ (π₯ + (πβπ₯))) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ ((π β§ π β (0..^π)) β ((πβπ)(,)(πβ(π + 1))) β π·) β β’ (π β (βπ¦ β β (π¦ < π β§ (π¦(,)π) β π·) β§ βπ¦ β β (π < π¦ β§ (π(,)π¦) β π·))) | ||
Theorem | fourierdlem42 44865* | The set of points in a moved partition are finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΅ < πΆ) & β’ π = (πΆ β π΅) & β’ (π β π΄ β (π΅[,]πΆ)) & β’ (π β π΄ β Fin) & β’ (π β π΅ β π΄) & β’ (π β πΆ β π΄) & β’ π· = (abs β β ) & β’ πΌ = ((π΄ Γ π΄) β I ) & β’ π = ran (π· βΎ πΌ) & β’ πΈ = inf(π , β, < ) & β’ (π β π β β) & β’ (π β π β β) & β’ π½ = (topGenβran (,)) & β’ πΎ = (π½ βΎt (π[,]π)) & β’ π» = {π₯ β (π[,]π) β£ βπ β β€ (π₯ + (π Β· π)) β π΄} & β’ (π β ((π β§ (π β β β§ π β β β§ π < π)) β§ βπ β β€ βπ β β€ ((π + (π Β· π)) β π΄ β§ (π + (π Β· π)) β π΄))) β β’ (π β π» β Fin) | ||
Theorem | fourierdlem43 44866 | πΎ is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ πΎ = (π β (-Ο[,]Ο) β¦ if(π = 0, 1, (π / (2 Β· (sinβ(π / 2)))))) β β’ πΎ:(-Ο[,]Ο)βΆβ | ||
Theorem | fourierdlem44 44867 | A condition for having (sinβ(π΄ / 2)) nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ ((π΄ β (-Ο[,]Ο) β§ π΄ β 0) β (sinβ(π΄ / 2)) β 0) | ||
Theorem | fourierdlem46 44868* | The function πΉ has a limit at the bounds of every interval induced by the partition π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ β (dom πΉβcnββ)) & β’ ((π β§ π₯ β ((-Ο[,)Ο) β dom πΉ)) β ((πΉ βΎ (π₯(,)+β)) limβ π₯) β β ) & β’ ((π β§ π₯ β ((-Ο(,]Ο) β dom πΉ)) β ((πΉ βΎ (-β(,)π₯)) limβ π₯) β β ) & β’ (π β π Isom < , < ((0...π), π»)) & β’ (π β π:(0...π)βΆπ») & β’ (π β πΌ β (0..^π)) & β’ (π β (πβπΌ) < (πβ(πΌ + 1))) & β’ (π β ((πβπΌ)(,)(πβ(πΌ + 1))) β (-Ο(,)Ο)) & β’ (π β πΆ β β) & β’ π» = ({-Ο, Ο, πΆ} βͺ ((-Ο[,]Ο) β dom πΉ)) & β’ (π β ran π = π») β β’ (π β (((πΉ βΎ ((πβπΌ)(,)(πβ(πΌ + 1)))) limβ (πβπΌ)) β β β§ ((πΉ βΎ ((πβπΌ)(,)(πβ(πΌ + 1)))) limβ (πβ(πΌ + 1))) β β )) | ||
Theorem | fourierdlem47 44869* | For π large enough, the final expression is less than the given positive πΈ. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β (π₯ β πΌ β¦ πΉ) β πΏ1) & β’ ((π β§ π β β) β (π₯ β πΌ β¦ (πΉ Β· -πΊ)) β πΏ1) & β’ ((π β§ π₯ β πΌ) β πΉ β β) & β’ (((π β§ π₯ β πΌ) β§ π β β) β πΊ β β) & β’ (((π β§ π₯ β πΌ) β§ π β β) β (absβπΊ) β€ 1) & β’ (π β π΄ β β) & β’ π = (absβπ΄) & β’ (π β πΆ β β) & β’ π = (absβπΆ) & β’ π = β«πΌ(absβπΉ) dπ₯ & β’ (π β πΈ β β+) & β’ ((π β§ π β β) β π΅ β β) & β’ ((π β§ π β β) β (absβπ΅) β€ 1) & β’ ((π β§ π β β) β π· β β) & β’ ((π β§ π β β) β (absβπ·) β€ 1) & β’ π = ((ββ((((π + π) + π) / πΈ) + 1)) + 1) β β’ (π β βπ β β βπ β (π(,)+β)(absβ(((π΄ Β· -(π΅ / π)) β (πΆ Β· -(π· / π))) β β«πΌ(πΉ Β· -(πΊ / π)) dπ₯)) < πΈ) | ||
Theorem | fourierdlem48 44870* | The given periodic function πΉ has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ π = (π΅ β π΄) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ (π β πΉ:π·βΆβ) & β’ ((π β§ π₯ β π· β§ π β β€) β (π₯ + (π Β· π)) β π·) & β’ ((π β§ π₯ β π· β§ π β β€) β (πΉβ(π₯ + (π Β· π))) = (πΉβπ₯)) & β’ ((π β§ π β (0..^π)) β (πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) & β’ ((π β§ π β (0..^π)) β π β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ))) & β’ (π β π β β) & β’ π = (π₯ β β β¦ ((ββ((π΅ β π₯) / π)) Β· π)) & β’ πΈ = (π₯ β β β¦ (π₯ + (πβπ₯))) & β’ (π β ((((π β§ π β (0..^π)) β§ π¦ β ((πβπ)[,)(πβ(π + 1)))) β§ π β β€) β§ π¦ = (π + (π Β· π)))) β β’ (π β ((πΉ βΎ (π(,)+β)) limβ π) β β ) | ||
Theorem | fourierdlem49 44871* | The given periodic function πΉ has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ π = (π΅ β π΄) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ (π β π· β β) & β’ (π β πΉ:π·βΆβ) & β’ ((π β§ π₯ β π· β§ π β β€) β (π₯ + (π Β· π)) β π·) & β’ ((π β§ π₯ β π· β§ π β β€) β (πΉβ(π₯ + (π Β· π))) = (πΉβπ₯)) & β’ ((π β§ π β (0..^π)) β (πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) & β’ ((π β§ π β (0..^π)) β πΏ β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1)))) & β’ (π β π β β) & β’ π = (π₯ β β β¦ ((ββ((π΅ β π₯) / π)) Β· π)) & β’ πΈ = (π₯ β β β¦ (π₯ + (πβπ₯))) β β’ (π β ((πΉ βΎ (-β(,)π)) limβ π) β β ) | ||
Theorem | fourierdlem50 44872* | Continuity of π and its limits with respect to the π partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π β β) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = (-Ο + π) β§ (πβπ) = (Ο + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄[,]π΅) β (-Ο[,]Ο)) & β’ π = (π β (0...π) β¦ ((πβπ) β π)) & β’ π = ({π΄, π΅} βͺ (ran π β© (π΄(,)π΅))) & β’ π = ((β―βπ) β 1) & β’ π = (β©ππ Isom < , < ((0...π), π)) & β’ (π β π½ β (0..^π)) & β’ π = (β©π β (0..^π)((πβπ½)(,)(πβ(π½ + 1))) β ((πβπ)(,)(πβ(π + 1)))) & β’ (π β ((((π β§ π β (0..^π)) β§ ((πβπ½)(,)(πβ(π½ + 1))) β ((πβπ)(,)(πβ(π + 1)))) β§ π β (0..^π)) β§ ((πβπ½)(,)(πβ(π½ + 1))) β ((πβπ)(,)(πβ(π + 1))))) β β’ (π β (π β (0..^π) β§ ((πβπ½)(,)(πβ(π½ + 1))) β ((πβπ)(,)(πβ(π + 1))))) | ||
Theorem | fourierdlem51 44873* | π is in the periodic partition, when the considered interval is centered at π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < 0) & β’ (π β 0 < π΅) & β’ π = (π΅ β π΄) & β’ (π β πΆ β Fin) & β’ (π β πΆ β (π΄[,]π΅)) & β’ (π β π΅ β πΆ) & β’ πΈ = (π₯ β β β¦ (π₯ + ((ββ((π΅ β π₯) / π)) Β· π))) & β’ (π β π β β) & β’ (π β (πΈβπ) β πΆ) & β’ π· = ({(π΄ + π), (π΅ + π)} βͺ {π¦ β ((π΄ + π)[,](π΅ + π)) β£ βπ β β€ (π¦ + (π Β· π)) β πΆ}) & β’ πΉ = (β©ππ Isom < , < ((0...((β―βπ·) β 1)), π·)) & β’ π» = {π¦ β ((π΄ + π)(,](π΅ + π)) β£ βπ β β€ (π¦ + (π Β· π)) β πΆ} β β’ (π β π β ran πΉ) | ||
Theorem | fourierdlem52 44874* | d16:d17,d18:jca |- ( ph -> ( ( S 0) β€ π΄ β§ π΄ β€ (π 0 ) ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π β Fin) & β’ π = ((β―βπ) β 1) & β’ π = (β©ππ Isom < , < ((0...π), π)) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β (π΄[,]π΅)) & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β ((π:(0...π)βΆ(π΄[,]π΅) β§ (πβ0) = π΄) β§ (πβπ) = π΅)) | ||
Theorem | fourierdlem53 44875* | The limit of πΉ(π ) at (π + π·) is the limit of πΉ(π + π ) at π·. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ (π β π΄ β β) & β’ πΊ = (π β π΄ β¦ (πΉβ(π + π ))) & β’ ((π β§ π β π΄) β (π + π ) β π΅) & β’ (π β π΅ β β) & β’ ((π β§ π β π΄) β π β π·) & β’ (π β πΆ β ((πΉ βΎ π΅) limβ (π + π·))) & β’ (π β π· β β) β β’ (π β πΆ β (πΊ limβ π·)) | ||
Theorem | fourierdlem54 44876* | Given a partition π and an arbitrary interval [πΆ, π·], a partition π on [πΆ, π·] is built such that it preserves any periodic function piecewise continuous on π will be piecewise continuous on π, with the same limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π΅ β π΄) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β πΆ < π·) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = πΆ β§ (πβπ) = π·) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ π» = ({πΆ, π·} βͺ {π₯ β (πΆ[,]π·) β£ βπ β β€ (π₯ + (π Β· π)) β ran π}) & β’ π = ((β―βπ») β 1) & β’ π = (β©ππ Isom < , < ((0...π), π»)) β β’ (π β ((π β β β§ π β (πβπ)) β§ π Isom < , < ((0...π), π»))) | ||
Theorem | fourierdlem55 44877* | π is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ π» = (π β (-Ο[,]Ο) β¦ if(π = 0, 0, (((πΉβ(π + π )) β if(0 < π , π, π)) / π ))) & β’ πΎ = (π β (-Ο[,]Ο) β¦ if(π = 0, 1, (π / (2 Β· (sinβ(π / 2)))))) & β’ π = (π β (-Ο[,]Ο) β¦ ((π»βπ ) Β· (πΎβπ ))) β β’ (π β π:(-Ο[,]Ο)βΆβ) | ||
Theorem | fourierdlem56 44878* | Derivative of the πΎ function on an interval not containing ' 0 '. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ πΎ = (π β (-Ο[,]Ο) β¦ if(π = 0, 1, (π / (2 Β· (sinβ(π / 2)))))) & β’ (π β (π΄(,)π΅) β ((-Ο[,]Ο) β {0})) & β’ ((π β§ π β (π΄(,)π΅)) β π β 0) β β’ (π β (β D (π β (π΄(,)π΅) β¦ (πΎβπ ))) = (π β (π΄(,)π΅) β¦ ((((sinβ(π / 2)) β (((cosβ(π / 2)) / 2) Β· π )) / ((sinβ(π / 2))β2)) / 2))) | ||
Theorem | fourierdlem57 44879* | The derivative of π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β (β D (πΉ βΎ ((π + π΄)(,)(π + π΅)))):((π + π΄)(,)(π + π΅))βΆβ) & β’ (π β (π΄(,)π΅) β (-Ο[,]Ο)) & β’ (π β Β¬ 0 β (π΄(,)π΅)) & β’ (π β πΆ β β) & β’ π = (π β (π΄(,)π΅) β¦ (((πΉβ(π + π )) β πΆ) / (2 Β· (sinβ(π / 2))))) β β’ ((π β ((β D π):(π΄(,)π΅)βΆβ β§ (β D π) = (π β (π΄(,)π΅) β¦ (((((β D (πΉ βΎ ((π + π΄)(,)(π + π΅))))β(π + π )) Β· (2 Β· (sinβ(π / 2)))) β ((cosβ(π / 2)) Β· ((πΉβ(π + π )) β πΆ))) / ((2 Β· (sinβ(π / 2)))β2))))) β§ (β D (π β (π΄(,)π΅) β¦ (2 Β· (sinβ(π / 2))))) = (π β (π΄(,)π΅) β¦ (cosβ(π / 2)))) | ||
Theorem | fourierdlem58 44880* | The derivative of πΎ is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ πΎ = (π β π΄ β¦ (π / (2 Β· (sinβ(π / 2))))) & β’ (π β π΄ β (-Ο[,]Ο)) & β’ (π β Β¬ 0 β π΄) & β’ (π β π΄ β (topGenβran (,))) β β’ (π β (β D πΎ) β (π΄βcnββ)) | ||
Theorem | fourierdlem59 44881* | The derivative of π» is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β Β¬ 0 β (π΄(,)π΅)) & β’ (π β (β D (πΉ βΎ ((π + π΄)(,)(π + π΅)))) β (((π + π΄)(,)(π + π΅))βcnββ)) & β’ (π β πΆ β β) & β’ π» = (π β (π΄(,)π΅) β¦ (((πΉβ(π + π )) β πΆ) / π )) β β’ (π β (β D π») β ((π΄(,)π΅)βcnββ)) | ||
Theorem | fourierdlem60 44882* | Given a differentiable function πΉ, with finite limit of the derivative at π΄ the derived function π» has a limit at 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ:(π΄(,)π΅)βΆβ) & β’ (π β π β (πΉ limβ π΅)) & β’ πΊ = (β D πΉ) & β’ (π β dom πΊ = (π΄(,)π΅)) & β’ (π β πΈ β (πΊ limβ π΅)) & β’ π» = (π β ((π΄ β π΅)(,)0) β¦ (((πΉβ(π΅ + π )) β π) / π )) & β’ π = (π β ((π΄ β π΅)(,)0) β¦ ((πΉβ(π΅ + π )) β π)) & β’ π· = (π β ((π΄ β π΅)(,)0) β¦ π ) β β’ (π β πΈ β (π» limβ 0)) | ||
Theorem | fourierdlem61 44883* | Given a differentiable function πΉ, with finite limit of the derivative at π΄ the derived function π» has a limit at 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ:(π΄(,)π΅)βΆβ) & β’ (π β π β (πΉ limβ π΄)) & β’ πΊ = (β D πΉ) & β’ (π β dom πΊ = (π΄(,)π΅)) & β’ (π β πΈ β (πΊ limβ π΄)) & β’ π» = (π β (0(,)(π΅ β π΄)) β¦ (((πΉβ(π΄ + π )) β π) / π )) & β’ π = (π β (0(,)(π΅ β π΄)) β¦ ((πΉβ(π΄ + π )) β π)) & β’ π· = (π β (0(,)(π΅ β π΄)) β¦ π ) β β’ (π β πΈ β (π» limβ 0)) | ||
Theorem | fourierdlem62 44884 | The function πΎ is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ πΎ = (π¦ β (-Ο[,]Ο) β¦ if(π¦ = 0, 1, (π¦ / (2 Β· (sinβ(π¦ / 2)))))) β β’ πΎ β ((-Ο[,]Ο)βcnββ) | ||
Theorem | fourierdlem63 44885* | The upper bound of intervals in the moved partition are mapped to points that are not greater than the corresponding upper bounds in the original partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π΅ β π΄) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β πΆ < π·) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = πΆ β§ (πβπ) = π·) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ π» = ({πΆ, π·} βͺ {π₯ β (πΆ[,]π·) β£ βπ β β€ (π₯ + (π Β· π)) β ran π}) & β’ π = ((β―βπ») β 1) & β’ π = (β©ππ Isom < , < ((0...π), π»)) & β’ πΈ = (π₯ β β β¦ (π₯ + ((ββ((π΅ β π₯) / π)) Β· π))) & β’ (π β πΎ β (0...π)) & β’ (π β π½ β (0..^π)) & β’ (π β π β ((πβπ½)[,)(πβ(π½ + 1)))) & β’ (π β (πΈβπ) < (πβπΎ)) & β’ π = ((πβπΎ) β ((πΈβπ) β π)) β β’ (π β (πΈβ(πβ(π½ + 1))) β€ (πβπΎ)) | ||
Theorem | fourierdlem64 44886* | The partition π is finer than π, when π is moved on the same interval where π lies. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π΅ β π΄) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β πΆ < π·) & β’ π» = ({πΆ, π·} βͺ {π¦ β (πΆ[,]π·) β£ βπ β β€ (π¦ + (π Β· π)) β ran π}) & β’ π = ((β―βπ») β 1) & β’ π = (β©ππ Isom < , < ((0...π), π»)) & β’ (π β π½ β (0..^π)) & β’ πΏ = sup({π β β€ β£ ((πβ0) + (π Β· π)) β€ (πβπ½)}, β, < ) & β’ πΌ = sup({π β (0..^π) β£ ((πβπ) + (πΏ Β· π)) β€ (πβπ½)}, β, < ) β β’ (π β ((πΌ β (0..^π) β§ πΏ β β€) β§ βπ β (0..^π)βπ β β€ ((πβπ½)(,)(πβ(π½ + 1))) β (((πβπ) + (π Β· π))(,)((πβ(π + 1)) + (π Β· π))))) | ||
Theorem | fourierdlem65 44887* | The distance of two adjacent points in the moved partition is preserved in the original partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ π = (π΅ β π΄) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ (π β πΆ β β) & β’ (π β π· β (πΆ(,)+β)) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = πΆ β§ (πβπ) = π·) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ π = ((β―β({πΆ, π·} βͺ {π¦ β (πΆ[,]π·) β£ βπ β β€ (π¦ + (π Β· (π΅ β π΄))) β ran π})) β 1) & β’ π = (β©ππ Isom < , < ((0...π), ({πΆ, π·} βͺ {π¦ β (πΆ[,]π·) β£ βπ β β€ (π¦ + (π Β· (π΅ β π΄))) β ran π}))) & β’ πΈ = (π₯ β β β¦ (π₯ + ((ββ((π΅ β π₯) / π)) Β· π))) & β’ πΏ = (π¦ β (π΄(,]π΅) β¦ if(π¦ = π΅, π΄, π¦)) & β’ π = ((πβπ) + (π΅ β (πΈβ(πβπ)))) β β’ ((π β§ π β (0..^π)) β ((πΈβ(πβ(π + 1))) β (πΏβ(πΈβ(πβπ)))) = ((πβ(π + 1)) β (πβπ))) | ||
Theorem | fourierdlem66 44888* | Value of the πΊ function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ π· = (π β β β¦ (π β β β¦ if((π mod (2 Β· Ο)) = 0, (((2 Β· π) + 1) / (2 Β· Ο)), ((sinβ((π + (1 / 2)) Β· π )) / ((2 Β· Ο) Β· (sinβ(π / 2))))))) & β’ π» = (π β (-Ο[,]Ο) β¦ if(π = 0, 0, (((πΉβ(π + π )) β if(0 < π , π, π)) / π ))) & β’ πΎ = (π β (-Ο[,]Ο) β¦ if(π = 0, 1, (π / (2 Β· (sinβ(π / 2)))))) & β’ π = (π β (-Ο[,]Ο) β¦ ((π»βπ ) Β· (πΎβπ ))) & β’ π = (π β (-Ο[,]Ο) β¦ (sinβ((π + (1 / 2)) Β· π ))) & β’ πΊ = (π β (-Ο[,]Ο) β¦ ((πβπ ) Β· (πβπ ))) & β’ π΄ = ((-Ο[,]Ο) β {0}) β β’ (((π β§ π β β) β§ π β π΄) β (πΊβπ ) = (Ο Β· (((πΉβ(π + π )) β if(0 < π , π, π)) Β· ((π·βπ)βπ )))) | ||
Theorem | fourierdlem67 44889* | πΊ is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ π» = (π β (-Ο[,]Ο) β¦ if(π = 0, 0, (((πΉβ(π + π )) β if(0 < π , π, π)) / π ))) & β’ πΎ = (π β (-Ο[,]Ο) β¦ if(π = 0, 1, (π / (2 Β· (sinβ(π / 2)))))) & β’ π = (π β (-Ο[,]Ο) β¦ ((π»βπ ) Β· (πΎβπ ))) & β’ (π β π β β) & β’ π = (π β (-Ο[,]Ο) β¦ (sinβ((π + (1 / 2)) Β· π ))) & β’ πΊ = (π β (-Ο[,]Ο) β¦ ((πβπ ) Β· (πβπ ))) β β’ (π β πΊ:(-Ο[,]Ο)βΆβ) | ||
Theorem | fourierdlem68 44890* | The derivative of π is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄[,]π΅) β (-Ο[,]Ο)) & β’ (π β Β¬ 0 β (π΄[,]π΅)) & β’ (π β (β D (πΉ βΎ ((π + π΄)(,)(π + π΅)))):((π + π΄)(,)(π + π΅))βΆβ) & β’ (π β π· β β) & β’ ((π β§ π‘ β ((π + π΄)(,)(π + π΅))) β (absβ(πΉβπ‘)) β€ π·) & β’ (π β πΈ β β) & β’ ((π β§ π‘ β ((π + π΄)(,)(π + π΅))) β (absβ((β D (πΉ βΎ ((π + π΄)(,)(π + π΅))))βπ‘)) β€ πΈ) & β’ (π β πΆ β β) & β’ π = (π β (π΄(,)π΅) β¦ (((πΉβ(π + π )) β πΆ) / (2 Β· (sinβ(π / 2))))) β β’ (π β (dom (β D π) = (π΄(,)π΅) β§ βπ β β βπ β dom (β D π)(absβ((β D π)βπ )) β€ π)) | ||
Theorem | fourierdlem69 44891* | A piecewise continuous function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ (π β πΉ:(π΄[,]π΅)βΆβ) & β’ ((π β§ π β (0..^π)) β (πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) & β’ ((π β§ π β (0..^π)) β π β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ))) & β’ ((π β§ π β (0..^π)) β πΏ β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1)))) β β’ (π β πΉ β πΏ1) | ||
Theorem | fourierdlem70 44892* | A piecewise continuous function is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β πΉ:(π΄[,]π΅)βΆβ) & β’ (π β π β β) & β’ (π β π:(0...π)βΆβ) & β’ (π β (πβ0) = π΄) & β’ (π β (πβπ) = π΅) & β’ ((π β§ π β (0..^π)) β (πβπ) < (πβ(π + 1))) & β’ ((π β§ π β (0..^π)) β (πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) & β’ ((π β§ π β (0..^π)) β π β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ))) & β’ ((π β§ π β (0..^π)) β πΏ β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1)))) & β’ πΌ = (π β (0..^π) β¦ ((πβπ)(,)(πβ(π + 1)))) β β’ (π β βπ₯ β β βπ β (π΄[,]π΅)(absβ(πΉβπ )) β€ π₯) | ||
Theorem | fourierdlem71 44893* | A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β dom πΉ β β) & β’ (π β πΉ:dom πΉβΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ π = (π΅ β π΄) & β’ (π β π β β) & β’ (π β π:(0...π)βΆβ) & β’ (π β (πβ0) = π΄) & β’ (π β (πβπ) = π΅) & β’ ((π β§ π β (0..^π)) β (πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) & β’ ((π β§ π β (0..^π)) β π β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ))) & β’ ((π β§ π β (0..^π)) β πΏ β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1)))) & β’ (((π β§ π₯ β dom πΉ) β§ π β β€) β (π₯ + (π Β· π)) β dom πΉ) & β’ (((π β§ π₯ β dom πΉ) β§ π β β€) β (πΉβ(π₯ + (π Β· π))) = (πΉβπ₯)) & β’ πΌ = (π β (0..^π) β¦ ((πβπ)(,)(πβ(π + 1)))) & β’ πΈ = (π₯ β β β¦ (π₯ + ((ββ((π΅ β π₯) / π)) Β· π))) β β’ (π β βπ¦ β β βπ₯ β dom πΉ(absβ(πΉβπ₯)) β€ π¦) | ||
Theorem | fourierdlem72 44894* | The derivative of π is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = (-Ο + π) β§ (πβπ) = (Ο + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ ((π β§ π β (0..^π)) β ((β D πΉ) βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄(,)π΅) β (-Ο[,]Ο)) & β’ (π β Β¬ 0 β (π΄[,]π΅)) & β’ (π β πΆ β β) & β’ π = (π β (0...π) β¦ ((πβπ) β π)) & β’ (π β π β (0..^π)) & β’ (π β (π΄(,)π΅) β ((πβπ)(,)(πβ(π + 1)))) & β’ π» = (π β (π΄(,)π΅) β¦ (((πΉβ(π + π )) β πΆ) / π )) & β’ πΎ = (π β (π΄(,)π΅) β¦ (π / (2 Β· (sinβ(π / 2))))) & β’ π = (π β (π΄(,)π΅) β¦ ((π»βπ ) Β· (πΎβπ ))) β β’ (π β (β D π) β ((π΄(,)π΅)βcnββ)) | ||
Theorem | fourierdlem73 44895* | A version of the Riemann Lebesgue lemma: as π increases, the integral in π goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ:(π΄[,]π΅)βΆβ) & β’ (π β π β β) & β’ (π β π:(0...π)βΆ(π΄[,]π΅)) & β’ (π β (πβ0) = π΄) & β’ (π β (πβπ) = π΅) & β’ ((π β§ π β (0..^π)) β (πβπ) < (πβ(π + 1))) & β’ ((π β§ π β (0..^π)) β (πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) & β’ ((π β§ π β (0..^π)) β πΏ β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1)))) & β’ ((π β§ π β (0..^π)) β π β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ))) & β’ πΊ = (β D πΉ) & β’ ((π β§ π β (0..^π)) β (πΊ βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) & β’ (π β βπ¦ β β βπ₯ β dom πΊ(absβ(πΊβπ₯)) β€ π¦) & β’ π = (π β β+ β¦ β«(π΄(,)π΅)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯) & β’ π· = (π₯ β ((πβπ)[,](πβ(π + 1))) β¦ if(π₯ = (πβπ), π , if(π₯ = (πβ(π + 1)), πΏ, (πΉβπ₯)))) β β’ (π β βπ β β+ βπ β β βπ β (π(,)+β)(absββ«(π΄(,)π΅)((πΉβπ₯) Β· (sinβ(π Β· π₯))) dπ₯) < π) | ||
Theorem | fourierdlem74 44896* | Given a piecewise smooth function πΉ, the derived function π» has a limit at the upper bound of each interval of the partition π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π β β) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = (-Ο + π) β§ (πβπ) = (Ο + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β πΉ:ββΆβ) & β’ (π β π β ran π) & β’ (π β π β β) & β’ (π β π β ((πΉ βΎ (-β(,)π)) limβ π)) & β’ π» = (π β (-Ο[,]Ο) β¦ if(π = 0, 0, (((πΉβ(π + π )) β if(0 < π , π, π)) / π ))) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ ((π β§ π β (0..^π)) β π β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1)))) & β’ π = (π β (0...π) β¦ ((πβπ) β π)) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = -Ο β§ (πβπ) = Ο) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ πΊ = (β D πΉ) & β’ ((π β§ π β (0..^π)) β (πΊ βΎ ((πβπ)(,)(πβ(π + 1)))):((πβπ)(,)(πβ(π + 1)))βΆβ) & β’ (π β πΈ β ((πΊ βΎ (-β(,)π)) limβ π)) & β’ π΄ = if((πβ(π + 1)) = π, πΈ, ((π β if((πβ(π + 1)) < π, π, π)) / (πβ(π + 1)))) β β’ ((π β§ π β (0..^π)) β π΄ β ((π» βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1)))) | ||
Theorem | fourierdlem75 44897* | Given a piecewise smooth function πΉ, the derived function π» has a limit at the lower bound of each interval of the partition π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π β β) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = (-Ο + π) β§ (πβπ) = (Ο + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β πΉ:ββΆβ) & β’ (π β π β ran π) & β’ (π β π β ((πΉ βΎ (π(,)+β)) limβ π)) & β’ (π β π β β) & β’ π» = (π β (-Ο[,]Ο) β¦ if(π = 0, 0, (((πΉβ(π + π )) β if(0 < π , π, π)) / π ))) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ ((π β§ π β (0..^π)) β π β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ))) & β’ π = (π β (0...π) β¦ ((πβπ) β π)) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = -Ο β§ (πβπ) = Ο) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ πΊ = (β D πΉ) & β’ ((π β§ π β (0..^π)) β (πΊ βΎ ((πβπ)(,)(πβ(π + 1)))):((πβπ)(,)(πβ(π + 1)))βΆβ) & β’ (π β πΈ β ((πΊ βΎ (π(,)+β)) limβ π)) & β’ π΄ = if((πβπ) = π, πΈ, ((π β if((πβπ) < π, π, π)) / (πβπ))) β β’ ((π β§ π β (0..^π)) β π΄ β ((π» βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ))) | ||
Theorem | fourierdlem76 44898* | Continuity of π and its limits with respect to the π partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ π = (π β β β¦ {π β (β βm (0...π)) β£ (((πβ0) = (-Ο + π) β§ (πβπ) = (Ο + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) & β’ (π β π β β) & β’ (π β π β (πβπ)) & β’ ((π β§ π β (0..^π)) β (πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) & β’ ((π β§ π β (0..^π)) β π β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ))) & β’ ((π β§ π β (0..^π)) β πΏ β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1)))) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄[,]π΅) β (-Ο[,]Ο)) & β’ (π β Β¬ 0 β (π΄[,]π΅)) & β’ (π β πΆ β β) & β’ π = (π β (π΄[,]π΅) β¦ ((((πΉβ(π + π )) β πΆ) / π ) Β· (π / (2 Β· (sinβ(π / 2)))))) & β’ π = (π β (0...π) β¦ ((πβπ) β π)) & β’ π = ({π΄, π΅} βͺ (ran π β© (π΄(,)π΅))) & β’ π = ((β―βπ) β 1) & β’ π = (β©ππ Isom < , < ((0...π), π)) & β’ π· = (((if((πβ(π + 1)) = (πβ(π + 1)), πΏ, (πΉβ(π + (πβ(π + 1))))) β πΆ) / (πβ(π + 1))) Β· ((πβ(π + 1)) / (2 Β· (sinβ((πβ(π + 1)) / 2))))) & β’ πΈ = (((if((πβπ) = (πβπ), π , (πΉβ(π + (πβπ)))) β πΆ) / (πβπ)) Β· ((πβπ) / (2 Β· (sinβ((πβπ) / 2))))) & β’ (π β (((π β§ π β (0..^π)) β§ π β (0..^π)) β§ ((πβπ)(,)(πβ(π + 1))) β ((πβπ)(,)(πβ(π + 1))))) β β’ ((((π β§ π β (0..^π)) β§ π β (0..^π)) β§ ((πβπ)(,)(πβ(π + 1))) β ((πβπ)(,)(πβ(π + 1)))) β ((π· β ((π βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1))) β§ πΈ β ((π βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ))) β§ (π βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ))) | ||
Theorem | fourierdlem77 44899* | If π» is bounded, then π is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β β) & β’ π» = (π β (-Ο[,]Ο) β¦ if(π = 0, 0, (((πΉβ(π + π )) β if(0 < π , π, π)) / π ))) & β’ πΎ = (π β (-Ο[,]Ο) β¦ if(π = 0, 1, (π / (2 Β· (sinβ(π / 2)))))) & β’ π = (π β (-Ο[,]Ο) β¦ ((π»βπ ) Β· (πΎβπ ))) & β’ (π β βπ β β βπ β (-Ο[,]Ο)(absβ(π»βπ )) β€ π) β β’ (π β βπ β β+ βπ β (-Ο[,]Ο)(absβ(πβπ )) β€ π) | ||
Theorem | fourierdlem78 44900* | πΊ is continuous when restricted on an interval not containing 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β πΉ:ββΆβ) & β’ (π β π΄ β (-Ο[,]Ο)) & β’ (π β π΅ β (-Ο[,]Ο)) & β’ (π β π β β) & β’ (π β Β¬ 0 β (π΄(,)π΅)) & β’ (π β (πΉ βΎ ((π΄ + π)(,)(π΅ + π))) β (((π΄ + π)(,)(π΅ + π))βcnββ)) & β’ (π β π β β) & β’ (π β π β β) & β’ π» = (π β (-Ο[,]Ο) β¦ if(π = 0, 0, (((πΉβ(π + π )) β if(0 < π , π, π)) / π ))) & β’ πΎ = (π β (-Ο[,]Ο) β¦ if(π = 0, 1, (π / (2 Β· (sinβ(π / 2)))))) & β’ π = (π β (-Ο[,]Ο) β¦ ((π»βπ ) Β· (πΎβπ ))) & β’ (π β π β β) & β’ π = (π β (-Ο[,]Ο) β¦ (sinβ((π + (1 / 2)) Β· π ))) & β’ πΊ = (π β (-Ο[,]Ο) β¦ ((πβπ ) Β· (πβπ ))) β β’ (π β (πΊ βΎ (π΄(,)π΅)) β ((π΄(,)π΅)βcnββ)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |