MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecase2dOLD Structured version   Visualization version   GIF version

Theorem ecase2dOLD 1027
Description: Obsolete version of ecase2d 1026 as of 19-Sep-2024. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Dec-2012.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ecase2d.1 (𝜑𝜓)
ecase2d.2 (𝜑 → ¬ (𝜓𝜒))
ecase2d.3 (𝜑 → ¬ (𝜓𝜃))
ecase2d.4 (𝜑 → (𝜏 ∨ (𝜒𝜃)))
Assertion
Ref Expression
ecase2dOLD (𝜑𝜏)

Proof of Theorem ecase2dOLD
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜏𝜏))
2 ecase2d.1 . . . 4 (𝜑𝜓)
3 ecase2d.2 . . . . 5 (𝜑 → ¬ (𝜓𝜒))
43pm2.21d 121 . . . 4 (𝜑 → ((𝜓𝜒) → 𝜏))
52, 4mpand 691 . . 3 (𝜑 → (𝜒𝜏))
6 ecase2d.3 . . . . 5 (𝜑 → ¬ (𝜓𝜃))
76pm2.21d 121 . . . 4 (𝜑 → ((𝜓𝜃) → 𝜏))
82, 7mpand 691 . . 3 (𝜑 → (𝜃𝜏))
95, 8jaod 855 . 2 (𝜑 → ((𝜒𝜃) → 𝜏))
10 ecase2d.4 . 2 (𝜑 → (𝜏 ∨ (𝜒𝜃)))
111, 9, 10mpjaod 856 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator