Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpjaod | Structured version Visualization version GIF version |
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
jaod.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
Ref | Expression |
---|---|
mpjaod | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) | |
2 | jaod.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | jaod.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 2, 3 | jaod 859 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
Copyright terms: Public domain | W3C validator |