Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecase2d | Structured version Visualization version GIF version |
Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Sep-2024.) |
Ref | Expression |
---|---|
ecase2d.1 | ⊢ (𝜑 → 𝜓) |
ecase2d.2 | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
ecase2d.3 | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜃)) |
ecase2d.4 | ⊢ (𝜑 → (𝜏 ∨ (𝜒 ∨ 𝜃))) |
Ref | Expression |
---|---|
ecase2d | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecase2d.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
2 | ecase2d.2 | . . . 4 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) | |
3 | 1, 2 | mpnanrd 409 | . . 3 ⊢ (𝜑 → ¬ 𝜒) |
4 | ecase2d.3 | . . . 4 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜃)) | |
5 | 1, 4 | mpnanrd 409 | . . 3 ⊢ (𝜑 → ¬ 𝜃) |
6 | ecase2d.4 | . . . 4 ⊢ (𝜑 → (𝜏 ∨ (𝜒 ∨ 𝜃))) | |
7 | 6 | ord 860 | . . 3 ⊢ (𝜑 → (¬ 𝜏 → (𝜒 ∨ 𝜃))) |
8 | 3, 5, 7 | mtord 876 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜏) |
9 | 8 | notnotrd 133 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |