MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecase2d Structured version   Visualization version   GIF version

Theorem ecase2d 1026
Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Sep-2024.)
Hypotheses
Ref Expression
ecase2d.1 (𝜑𝜓)
ecase2d.2 (𝜑 → ¬ (𝜓𝜒))
ecase2d.3 (𝜑 → ¬ (𝜓𝜃))
ecase2d.4 (𝜑 → (𝜏 ∨ (𝜒𝜃)))
Assertion
Ref Expression
ecase2d (𝜑𝜏)

Proof of Theorem ecase2d
StepHypRef Expression
1 ecase2d.1 . . . 4 (𝜑𝜓)
2 ecase2d.2 . . . 4 (𝜑 → ¬ (𝜓𝜒))
31, 2mpnanrd 409 . . 3 (𝜑 → ¬ 𝜒)
4 ecase2d.3 . . . 4 (𝜑 → ¬ (𝜓𝜃))
51, 4mpnanrd 409 . . 3 (𝜑 → ¬ 𝜃)
6 ecase2d.4 . . . 4 (𝜑 → (𝜏 ∨ (𝜒𝜃)))
76ord 860 . . 3 (𝜑 → (¬ 𝜏 → (𝜒𝜃)))
83, 5, 7mtord 876 . 2 (𝜑 → ¬ ¬ 𝜏)
98notnotrd 133 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator