Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecase3 | Structured version Visualization version GIF version |
Description: Inference for elimination by cases. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 26-Nov-2012.) |
Ref | Expression |
---|---|
ecase3.1 | ⊢ (𝜑 → 𝜒) |
ecase3.2 | ⊢ (𝜓 → 𝜒) |
ecase3.3 | ⊢ (¬ (𝜑 ∨ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ecase3 | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecase3.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | ecase3.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | jaoi 854 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
4 | ecase3.3 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → 𝜒) | |
5 | 3, 4 | pm2.61i 182 | 1 ⊢ 𝜒 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: eueq3 3646 lcmfunsnlem2 16345 |
Copyright terms: Public domain | W3C validator |