MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem2 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem2 16569
Description: Lemma for lcmfunsn 16573 and lcmfunsnlem 16570 (Induction step part 2). (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧,𝑚

Proof of Theorem lcmfunsnlem2
StepHypRef Expression
1 nfv 1914 . . 3 𝑛(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)
2 nfv 1914 . . . 4 𝑛𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)
3 nfra1 3253 . . . 4 𝑛𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)
42, 3nfan 1899 . . 3 𝑛(∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))
51, 4nfan 1899 . 2 𝑛((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
6 0z 12500 . . . . 5 0 ∈ ℤ
7 eqoreldif 4639 . . . . 5 (0 ∈ ℤ → (𝑛 ∈ ℤ ↔ (𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0}))))
86, 7ax-mp 5 . . . 4 (𝑛 ∈ ℤ ↔ (𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0})))
9 simp2 1137 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
10 snssi 4762 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → {𝑧} ⊆ ℤ)
11103ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆ ℤ)
129, 11unssd 4145 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
13 snssi 4762 . . . . . . . . . . . . 13 (0 ∈ ℤ → {0} ⊆ ℤ)
146, 13mp1i 13 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {0} ⊆ ℤ)
1512, 14unssd 4145 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {0}) ⊆ ℤ)
16 c0ex 11128 . . . . . . . . . . . . . 14 0 ∈ V
1716snid 4616 . . . . . . . . . . . . 13 0 ∈ {0}
1817olci 866 . . . . . . . . . . . 12 (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {0})
19 elun 4106 . . . . . . . . . . . 12 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {0}))
2018, 19mpbir 231 . . . . . . . . . . 11 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0})
21 lcmf0val 16551 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ∪ {0}) ⊆ ℤ ∧ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0})) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
2215, 20, 21sylancl 586 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
2322adantr 480 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
24 sneq 4589 . . . . . . . . . . . 12 (𝑛 = 0 → {𝑛} = {0})
2524adantl 481 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → {𝑛} = {0})
2625uneq2d 4121 . . . . . . . . . 10 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) = ((𝑦 ∪ {𝑧}) ∪ {0}))
2726fveq2d 6830 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})))
28 oveq2 7361 . . . . . . . . . 10 (𝑛 = 0 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 0))
29 snfi 8975 . . . . . . . . . . . . . . 15 {𝑧} ∈ Fin
30 unfi 9095 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
3129, 30mpan2 691 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
32313ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
33 lcmfcl 16557 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
3412, 32, 33syl2anc 584 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
3534nn0zd 12515 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
36 lcm0val 16523 . . . . . . . . . . 11 ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ → ((lcm‘(𝑦 ∪ {𝑧})) lcm 0) = 0)
3735, 36syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 0) = 0)
3828, 37sylan9eqr 2786 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = 0)
3923, 27, 383eqtr4d 2774 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
4039ex 412 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 = 0 → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
4140adantr 480 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 = 0 → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
4241com12 32 . . . . 5 (𝑛 = 0 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
439adantl 481 . . . . . . . . . . . . . 14 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 𝑦 ⊆ ℤ)
4411adantl 481 . . . . . . . . . . . . . 14 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑧} ⊆ ℤ)
4543, 44unssd 4145 . . . . . . . . . . . . 13 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
46 elun1 4135 . . . . . . . . . . . . . 14 (0 ∈ 𝑦 → 0 ∈ (𝑦 ∪ {𝑧}))
4746ad2antrr 726 . . . . . . . . . . . . 13 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
48 lcmf0val 16551 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ 0 ∈ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
4945, 47, 48syl2anc 584 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
5049oveq2d 7369 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = (𝑛 lcm 0))
51 eldifi 4084 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ ∖ {0}) → 𝑛 ∈ ℤ)
52 lcm0val 16523 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑛 lcm 0) = 0)
5351, 52syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ ∖ {0}) → (𝑛 lcm 0) = 0)
5453ad2antlr 727 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm 0) = 0)
5550, 54eqtrd 2764 . . . . . . . . . 10 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = 0)
56 simp3 1138 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
5756, 29, 30sylancl 586 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
5812, 57, 33syl2anc 584 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
5958nn0zd 12515 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
6051adantl 481 . . . . . . . . . . 11 ((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) → 𝑛 ∈ ℤ)
61 lcmcom 16522 . . . . . . . . . . 11 (((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
6259, 60, 61syl2anr 597 . . . . . . . . . 10 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
6312adantl 481 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
6451snssd 4763 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ ∖ {0}) → {𝑛} ⊆ ℤ)
6564ad2antlr 727 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑛} ⊆ ℤ)
6663, 65unssd 4145 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
6746orcd 873 . . . . . . . . . . . . 13 (0 ∈ 𝑦 → (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
68 elun 4106 . . . . . . . . . . . . 13 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
6967, 68sylibr 234 . . . . . . . . . . . 12 (0 ∈ 𝑦 → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
7069ad2antrr 726 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
71 lcmf0val 16551 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
7266, 70, 71syl2anc 584 . . . . . . . . . 10 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
7355, 62, 723eqtr4rd 2775 . . . . . . . . 9 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
7473a1d 25 . . . . . . . 8 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7574expimpd 453 . . . . . . 7 ((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7675ex 412 . . . . . 6 (0 ∈ 𝑦 → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
77 elsng 4593 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℤ → (0 ∈ {𝑧} ↔ 0 = 𝑧))
78 eqcom 2736 . . . . . . . . . . . . . . . . . . 19 (0 = 𝑧𝑧 = 0)
7977, 78bitrdi 287 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℤ → (0 ∈ {𝑧} ↔ 𝑧 = 0))
806, 79ax-mp 5 . . . . . . . . . . . . . . . . 17 (0 ∈ {𝑧} ↔ 𝑧 = 0)
8180biimpri 228 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 0 ∈ {𝑧})
8281ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ {𝑧})
8382olcd 874 . . . . . . . . . . . . . 14 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
84 elun 4106 . . . . . . . . . . . . . 14 (0 ∈ (𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
8583, 84sylibr 234 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
8612, 85, 48syl2an2 686 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
8786oveq2d 7369 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = (𝑛 lcm 0))
8851ad2antlr 727 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 𝑛 ∈ ℤ)
8988, 52syl 17 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm 0) = 0)
9087, 89eqtrd 2764 . . . . . . . . . 10 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = 0)
9159, 88, 61syl2an2 686 . . . . . . . . . 10 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
9212adantl 481 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
9364ad2antlr 727 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑛} ⊆ ℤ)
9492, 93unssd 4145 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
95 sneq 4589 . . . . . . . . . . . . . . . . 17 (𝑧 = 0 → {𝑧} = {0})
9617, 95eleqtrrid 2835 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 0 ∈ {𝑧})
9796ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ {𝑧})
9897olcd 874 . . . . . . . . . . . . . 14 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
9998, 84sylibr 234 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
10099orcd 873 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
101100, 68sylibr 234 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
10294, 101, 71syl2anc 584 . . . . . . . . . 10 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
10390, 91, 1023eqtr4rd 2775 . . . . . . . . 9 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
104103a1d 25 . . . . . . . 8 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
105104expimpd 453 . . . . . . 7 ((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
106105ex 412 . . . . . 6 (𝑧 = 0 → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
107 ioran 985 . . . . . . . 8 (¬ (0 ∈ 𝑦𝑧 = 0) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0))
108 df-nel 3030 . . . . . . . . 9 (0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦)
109 df-ne 2926 . . . . . . . . 9 (𝑧 ≠ 0 ↔ ¬ 𝑧 = 0)
110108, 109anbi12i 628 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0))
111107, 110bitr4i 278 . . . . . . 7 (¬ (0 ∈ 𝑦𝑧 = 0) ↔ (0 ∉ 𝑦𝑧 ≠ 0))
112 eldif 3915 . . . . . . . 8 (𝑛 ∈ (ℤ ∖ {0}) ↔ (𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ {0}))
113 velsn 4595 . . . . . . . . . . . 12 (𝑛 ∈ {0} ↔ 𝑛 = 0)
114113bicomi 224 . . . . . . . . . . 11 (𝑛 = 0 ↔ 𝑛 ∈ {0})
115114necon3abii 2971 . . . . . . . . . 10 (𝑛 ≠ 0 ↔ ¬ 𝑛 ∈ {0})
116 lcmfunsnlem2lem2 16568 . . . . . . . . . . . 12 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
117116exp520 1358 . . . . . . . . . . 11 (0 ∉ 𝑦 → (𝑧 ≠ 0 → (𝑛 ≠ 0 → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
118117imp 406 . . . . . . . . . 10 ((0 ∉ 𝑦𝑧 ≠ 0) → (𝑛 ≠ 0 → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
119115, 118biimtrrid 243 . . . . . . . . 9 ((0 ∉ 𝑦𝑧 ≠ 0) → (¬ 𝑛 ∈ {0} → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
120119impcomd 411 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0) → ((𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
121112, 120biimtrid 242 . . . . . . 7 ((0 ∉ 𝑦𝑧 ≠ 0) → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
122111, 121sylbi 217 . . . . . 6 (¬ (0 ∈ 𝑦𝑧 = 0) → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
12376, 106, 122ecase3 1032 . . . . 5 (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
12442, 123jaoi 857 . . . 4 ((𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
1258, 124sylbi 217 . . 3 (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
126125com12 32 . 2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
1275, 126ralrimi 3227 1 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  cdif 3902  cun 3903  wss 3905  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  0cc0 11028  0cn0 12402  cz 12489  cdvds 16181   lcm clcm 16517  lcmclcmf 16518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-prod 15829  df-dvds 16182  df-gcd 16424  df-lcm 16519  df-lcmf 16520
This theorem is referenced by:  lcmfunsnlem  16570
  Copyright terms: Public domain W3C validator