Proof of Theorem lcmfunsnlem2
Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑛(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) |
2 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑛∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) |
3 | | nfra1 3142 |
. . . 4
⊢
Ⅎ𝑛∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛) |
4 | 2, 3 | nfan 1903 |
. . 3
⊢
Ⅎ𝑛(∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) |
5 | 1, 4 | nfan 1903 |
. 2
⊢
Ⅎ𝑛((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) |
6 | | 0z 12260 |
. . . . 5
⊢ 0 ∈
ℤ |
7 | | eqoreldif 4617 |
. . . . 5
⊢ (0 ∈
ℤ → (𝑛 ∈
ℤ ↔ (𝑛 = 0 ∨
𝑛 ∈ (ℤ ∖
{0})))) |
8 | 6, 7 | ax-mp 5 |
. . . 4
⊢ (𝑛 ∈ ℤ ↔ (𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖
{0}))) |
9 | | simp2 1135 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆
ℤ) |
10 | | snssi 4738 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℤ → {𝑧} ⊆
ℤ) |
11 | 10 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆
ℤ) |
12 | 9, 11 | unssd 4116 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ) |
13 | | snssi 4738 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℤ → {0} ⊆ ℤ) |
14 | 6, 13 | mp1i 13 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {0} ⊆
ℤ) |
15 | 12, 14 | unssd 4116 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {0}) ⊆
ℤ) |
16 | | c0ex 10900 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
17 | 16 | snid 4594 |
. . . . . . . . . . . . 13
⊢ 0 ∈
{0} |
18 | 17 | olci 862 |
. . . . . . . . . . . 12
⊢ (0 ∈
(𝑦 ∪ {𝑧}) ∨ 0 ∈
{0}) |
19 | | elun 4079 |
. . . . . . . . . . . 12
⊢ (0 ∈
((𝑦 ∪ {𝑧}) ∪ {0}) ↔ (0 ∈
(𝑦 ∪ {𝑧}) ∨ 0 ∈
{0})) |
20 | 18, 19 | mpbir 230 |
. . . . . . . . . . 11
⊢ 0 ∈
((𝑦 ∪ {𝑧}) ∪ {0}) |
21 | | lcmf0val 16255 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∪ {𝑧}) ∪ {0}) ⊆ ℤ ∧ 0 ∈
((𝑦 ∪ {𝑧}) ∪ {0})) →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {0})) =
0) |
22 | 15, 20, 21 | sylancl 585 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {0})) =
0) |
23 | 22 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {0})) =
0) |
24 | | sneq 4568 |
. . . . . . . . . . . 12
⊢ (𝑛 = 0 → {𝑛} = {0}) |
25 | 24 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → {𝑛} = {0}) |
26 | 25 | uneq2d 4093 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) = ((𝑦 ∪ {𝑧}) ∪ {0})) |
27 | 26 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {𝑛})) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {0}))) |
28 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑛 = 0 →
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 0)) |
29 | | snfi 8788 |
. . . . . . . . . . . . . . 15
⊢ {𝑧} ∈ Fin |
30 | | unfi 8917 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
31 | 29, 30 | mpan2 687 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin) |
32 | 31 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
33 | | lcmfcl 16261 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ0) |
34 | 12, 32, 33 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ0) |
35 | 34 | nn0zd 12353 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℤ) |
36 | | lcm0val 16227 |
. . . . . . . . . . 11
⊢
((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ →
((lcm‘(𝑦 ∪
{𝑧})) lcm 0) =
0) |
37 | 35, 36 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
((lcm‘(𝑦 ∪
{𝑧})) lcm 0) =
0) |
38 | 28, 37 | sylan9eqr 2801 |
. . . . . . . . 9
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) →
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛) = 0) |
39 | 23, 27, 38 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) |
40 | 39 | ex 412 |
. . . . . . 7
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 = 0 →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
41 | 40 | adantr 480 |
. . . . . 6
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑛 = 0 → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
42 | 41 | com12 32 |
. . . . 5
⊢ (𝑛 = 0 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
43 | 9 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
𝑦 ⊆
ℤ) |
44 | 11 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
{𝑧} ⊆
ℤ) |
45 | 43, 44 | unssd 4116 |
. . . . . . . . . . . . 13
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
(𝑦 ∪ {𝑧}) ⊆
ℤ) |
46 | | elun1 4106 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
𝑦 → 0 ∈ (𝑦 ∪ {𝑧})) |
47 | 46 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
0 ∈ (𝑦 ∪ {𝑧})) |
48 | | lcmf0val 16255 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ 0 ∈ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) = 0) |
49 | 45, 47, 48 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
(lcm‘(𝑦 ∪
{𝑧})) = 0) |
50 | 49 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
(𝑛 lcm
(lcm‘(𝑦 ∪
{𝑧}))) = (𝑛 lcm 0)) |
51 | | eldifi 4057 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (ℤ ∖ {0})
→ 𝑛 ∈
ℤ) |
52 | | lcm0val 16227 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → (𝑛 lcm 0) = 0) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (ℤ ∖ {0})
→ (𝑛 lcm 0) =
0) |
54 | 53 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
(𝑛 lcm 0) =
0) |
55 | 50, 54 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
(𝑛 lcm
(lcm‘(𝑦 ∪
{𝑧}))) =
0) |
56 | | simp3 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin) |
57 | 56, 29, 30 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
58 | 12, 57, 33 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ0) |
59 | 58 | nn0zd 12353 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℤ) |
60 | 51 | adantl 481 |
. . . . . . . . . . 11
⊢ ((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
→ 𝑛 ∈
ℤ) |
61 | | lcmcom 16226 |
. . . . . . . . . . 11
⊢
(((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) →
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧})))) |
62 | 59, 60, 61 | syl2anr 596 |
. . . . . . . . . 10
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧})))) |
63 | 12 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
(𝑦 ∪ {𝑧}) ⊆
ℤ) |
64 | 51 | snssd 4739 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (ℤ ∖ {0})
→ {𝑛} ⊆
ℤ) |
65 | 64 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
{𝑛} ⊆
ℤ) |
66 | 63, 65 | unssd 4116 |
. . . . . . . . . . 11
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ) |
67 | 46 | orcd 869 |
. . . . . . . . . . . . 13
⊢ (0 ∈
𝑦 → (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛})) |
68 | | elun 4079 |
. . . . . . . . . . . . 13
⊢ (0 ∈
((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛})) |
69 | 67, 68 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (0 ∈
𝑦 → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) |
70 | 69 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) |
71 | | lcmf0val 16255 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0) |
72 | 66, 70, 71 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {𝑛})) = 0) |
73 | 55, 62, 72 | 3eqtr4rd 2789 |
. . . . . . . . 9
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) |
74 | 73 | a1d 25 |
. . . . . . . 8
⊢ (((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
∧ (𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin)) →
((∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
75 | 74 | expimpd 453 |
. . . . . . 7
⊢ ((0
∈ 𝑦 ∧ 𝑛 ∈ (ℤ ∖ {0}))
→ (((𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
76 | 75 | ex 412 |
. . . . . 6
⊢ (0 ∈
𝑦 → (𝑛 ∈ (ℤ ∖ {0})
→ (((𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))) |
77 | | elsng 4572 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 ∈
ℤ → (0 ∈ {𝑧} ↔ 0 = 𝑧)) |
78 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 =
𝑧 ↔ 𝑧 = 0) |
79 | 77, 78 | bitrdi 286 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℤ → (0 ∈ {𝑧} ↔ 𝑧 = 0)) |
80 | 6, 79 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
{𝑧} ↔ 𝑧 = 0) |
81 | 80 | biimpri 227 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 0 → 0 ∈ {𝑧}) |
82 | 81 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈
{𝑧}) |
83 | 82 | olcd 870 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈
𝑦 ∨ 0 ∈ {𝑧})) |
84 | | elun 4079 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
(𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧})) |
85 | 83, 84 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈
(𝑦 ∪ {𝑧})) |
86 | 12, 85, 48 | syl2an2 682 |
. . . . . . . . . . . 12
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) →
(lcm‘(𝑦 ∪
{𝑧})) = 0) |
87 | 86 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = (𝑛 lcm 0)) |
88 | 51 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 𝑛 ∈
ℤ) |
89 | 88, 52 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm 0) = 0) |
90 | 87, 89 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = 0) |
91 | 59, 88, 61 | syl2an2 682 |
. . . . . . . . . 10
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) →
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧})))) |
92 | 12 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ) |
93 | 64 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑛} ⊆
ℤ) |
94 | 92, 93 | unssd 4116 |
. . . . . . . . . . 11
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ) |
95 | | sneq 4568 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 0 → {𝑧} = {0}) |
96 | 17, 95 | eleqtrrid 2846 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 0 → 0 ∈ {𝑧}) |
97 | 96 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈
{𝑧}) |
98 | 97 | olcd 870 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈
𝑦 ∨ 0 ∈ {𝑧})) |
99 | 98, 84 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈
(𝑦 ∪ {𝑧})) |
100 | 99 | orcd 869 |
. . . . . . . . . . . 12
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈
(𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛})) |
101 | 100, 68 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈
((𝑦 ∪ {𝑧}) ∪ {𝑛})) |
102 | 94, 101, 71 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {𝑛})) = 0) |
103 | 90, 91, 102 | 3eqtr4rd 2789 |
. . . . . . . . 9
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) |
104 | 103 | a1d 25 |
. . . . . . . 8
⊢ (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) →
((∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
105 | 104 | expimpd 453 |
. . . . . . 7
⊢ ((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) →
(((𝑧 ∈ ℤ ∧
𝑦 ⊆ ℤ ∧
𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
106 | 105 | ex 412 |
. . . . . 6
⊢ (𝑧 = 0 → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))) |
107 | | ioran 980 |
. . . . . . . 8
⊢ (¬ (0
∈ 𝑦 ∨ 𝑧 = 0) ↔ (¬ 0 ∈
𝑦 ∧ ¬ 𝑧 = 0)) |
108 | | df-nel 3049 |
. . . . . . . . 9
⊢ (0
∉ 𝑦 ↔ ¬ 0
∈ 𝑦) |
109 | | df-ne 2943 |
. . . . . . . . 9
⊢ (𝑧 ≠ 0 ↔ ¬ 𝑧 = 0) |
110 | 108, 109 | anbi12i 626 |
. . . . . . . 8
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0) ↔ (¬ 0 ∈
𝑦 ∧ ¬ 𝑧 = 0)) |
111 | 107, 110 | bitr4i 277 |
. . . . . . 7
⊢ (¬ (0
∈ 𝑦 ∨ 𝑧 = 0) ↔ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0)) |
112 | | eldif 3893 |
. . . . . . . 8
⊢ (𝑛 ∈ (ℤ ∖ {0})
↔ (𝑛 ∈ ℤ
∧ ¬ 𝑛 ∈
{0})) |
113 | | velsn 4574 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {0} ↔ 𝑛 = 0) |
114 | 113 | bicomi 223 |
. . . . . . . . . . 11
⊢ (𝑛 = 0 ↔ 𝑛 ∈ {0}) |
115 | 114 | necon3abii 2989 |
. . . . . . . . . 10
⊢ (𝑛 ≠ 0 ↔ ¬ 𝑛 ∈ {0}) |
116 | | lcmfunsnlem2lem2 16272 |
. . . . . . . . . . . 12
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) |
117 | 116 | exp520 1355 |
. . . . . . . . . . 11
⊢ (0
∉ 𝑦 → (𝑧 ≠ 0 → (𝑛 ≠ 0 → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))) |
118 | 117 | imp 406 |
. . . . . . . . . 10
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0) → (𝑛 ≠ 0 → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))) |
119 | 115, 118 | syl5bir 242 |
. . . . . . . . 9
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0) → (¬ 𝑛 ∈ {0} → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))) |
120 | 119 | impcomd 411 |
. . . . . . . 8
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0) → ((𝑛 ∈ ℤ ∧ ¬
𝑛 ∈ {0}) →
(((𝑧 ∈ ℤ ∧
𝑦 ⊆ ℤ ∧
𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))) |
121 | 112, 120 | syl5bi 241 |
. . . . . . 7
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0) → (𝑛 ∈ (ℤ ∖ {0})
→ (((𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))) |
122 | 111, 121 | sylbi 216 |
. . . . . 6
⊢ (¬ (0
∈ 𝑦 ∨ 𝑧 = 0) → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))) |
123 | 76, 106, 122 | ecase3 1028 |
. . . . 5
⊢ (𝑛 ∈ (ℤ ∖ {0})
→ (((𝑧 ∈ ℤ
∧ 𝑦 ⊆ ℤ
∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
124 | 42, 123 | jaoi 853 |
. . . 4
⊢ ((𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0})) →
(((𝑧 ∈ ℤ ∧
𝑦 ⊆ ℤ ∧
𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
125 | 8, 124 | sylbi 216 |
. . 3
⊢ (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
126 | 125 | com12 32 |
. 2
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ →
(lcm‘((𝑦 ∪
{𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
127 | 5, 126 | ralrimi 3139 |
1
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) |