MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem2 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem2 16617
Description: Lemma for lcmfunsn 16621 and lcmfunsnlem 16618 (Induction step part 2). (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧,𝑚

Proof of Theorem lcmfunsnlem2
StepHypRef Expression
1 nfv 1914 . . 3 𝑛(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)
2 nfv 1914 . . . 4 𝑛𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)
3 nfra1 3262 . . . 4 𝑛𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)
42, 3nfan 1899 . . 3 𝑛(∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))
51, 4nfan 1899 . 2 𝑛((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
6 0z 12547 . . . . 5 0 ∈ ℤ
7 eqoreldif 4652 . . . . 5 (0 ∈ ℤ → (𝑛 ∈ ℤ ↔ (𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0}))))
86, 7ax-mp 5 . . . 4 (𝑛 ∈ ℤ ↔ (𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0})))
9 simp2 1137 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
10 snssi 4775 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → {𝑧} ⊆ ℤ)
11103ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆ ℤ)
129, 11unssd 4158 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
13 snssi 4775 . . . . . . . . . . . . 13 (0 ∈ ℤ → {0} ⊆ ℤ)
146, 13mp1i 13 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {0} ⊆ ℤ)
1512, 14unssd 4158 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {0}) ⊆ ℤ)
16 c0ex 11175 . . . . . . . . . . . . . 14 0 ∈ V
1716snid 4629 . . . . . . . . . . . . 13 0 ∈ {0}
1817olci 866 . . . . . . . . . . . 12 (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {0})
19 elun 4119 . . . . . . . . . . . 12 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {0}))
2018, 19mpbir 231 . . . . . . . . . . 11 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0})
21 lcmf0val 16599 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ∪ {0}) ⊆ ℤ ∧ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0})) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
2215, 20, 21sylancl 586 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
2322adantr 480 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
24 sneq 4602 . . . . . . . . . . . 12 (𝑛 = 0 → {𝑛} = {0})
2524adantl 481 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → {𝑛} = {0})
2625uneq2d 4134 . . . . . . . . . 10 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) = ((𝑦 ∪ {𝑧}) ∪ {0}))
2726fveq2d 6865 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})))
28 oveq2 7398 . . . . . . . . . 10 (𝑛 = 0 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 0))
29 snfi 9017 . . . . . . . . . . . . . . 15 {𝑧} ∈ Fin
30 unfi 9141 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
3129, 30mpan2 691 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
32313ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
33 lcmfcl 16605 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
3412, 32, 33syl2anc 584 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
3534nn0zd 12562 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
36 lcm0val 16571 . . . . . . . . . . 11 ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ → ((lcm‘(𝑦 ∪ {𝑧})) lcm 0) = 0)
3735, 36syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 0) = 0)
3828, 37sylan9eqr 2787 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = 0)
3923, 27, 383eqtr4d 2775 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
4039ex 412 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 = 0 → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
4140adantr 480 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 = 0 → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
4241com12 32 . . . . 5 (𝑛 = 0 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
439adantl 481 . . . . . . . . . . . . . 14 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 𝑦 ⊆ ℤ)
4411adantl 481 . . . . . . . . . . . . . 14 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑧} ⊆ ℤ)
4543, 44unssd 4158 . . . . . . . . . . . . 13 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
46 elun1 4148 . . . . . . . . . . . . . 14 (0 ∈ 𝑦 → 0 ∈ (𝑦 ∪ {𝑧}))
4746ad2antrr 726 . . . . . . . . . . . . 13 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
48 lcmf0val 16599 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ 0 ∈ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
4945, 47, 48syl2anc 584 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
5049oveq2d 7406 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = (𝑛 lcm 0))
51 eldifi 4097 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ ∖ {0}) → 𝑛 ∈ ℤ)
52 lcm0val 16571 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑛 lcm 0) = 0)
5351, 52syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ ∖ {0}) → (𝑛 lcm 0) = 0)
5453ad2antlr 727 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm 0) = 0)
5550, 54eqtrd 2765 . . . . . . . . . 10 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = 0)
56 simp3 1138 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
5756, 29, 30sylancl 586 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
5812, 57, 33syl2anc 584 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
5958nn0zd 12562 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
6051adantl 481 . . . . . . . . . . 11 ((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) → 𝑛 ∈ ℤ)
61 lcmcom 16570 . . . . . . . . . . 11 (((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
6259, 60, 61syl2anr 597 . . . . . . . . . 10 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
6312adantl 481 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
6451snssd 4776 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ ∖ {0}) → {𝑛} ⊆ ℤ)
6564ad2antlr 727 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑛} ⊆ ℤ)
6663, 65unssd 4158 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
6746orcd 873 . . . . . . . . . . . . 13 (0 ∈ 𝑦 → (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
68 elun 4119 . . . . . . . . . . . . 13 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
6967, 68sylibr 234 . . . . . . . . . . . 12 (0 ∈ 𝑦 → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
7069ad2antrr 726 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
71 lcmf0val 16599 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
7266, 70, 71syl2anc 584 . . . . . . . . . 10 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
7355, 62, 723eqtr4rd 2776 . . . . . . . . 9 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
7473a1d 25 . . . . . . . 8 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7574expimpd 453 . . . . . . 7 ((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7675ex 412 . . . . . 6 (0 ∈ 𝑦 → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
77 elsng 4606 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℤ → (0 ∈ {𝑧} ↔ 0 = 𝑧))
78 eqcom 2737 . . . . . . . . . . . . . . . . . . 19 (0 = 𝑧𝑧 = 0)
7977, 78bitrdi 287 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℤ → (0 ∈ {𝑧} ↔ 𝑧 = 0))
806, 79ax-mp 5 . . . . . . . . . . . . . . . . 17 (0 ∈ {𝑧} ↔ 𝑧 = 0)
8180biimpri 228 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 0 ∈ {𝑧})
8281ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ {𝑧})
8382olcd 874 . . . . . . . . . . . . . 14 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
84 elun 4119 . . . . . . . . . . . . . 14 (0 ∈ (𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
8583, 84sylibr 234 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
8612, 85, 48syl2an2 686 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
8786oveq2d 7406 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = (𝑛 lcm 0))
8851ad2antlr 727 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 𝑛 ∈ ℤ)
8988, 52syl 17 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm 0) = 0)
9087, 89eqtrd 2765 . . . . . . . . . 10 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = 0)
9159, 88, 61syl2an2 686 . . . . . . . . . 10 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
9212adantl 481 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
9364ad2antlr 727 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑛} ⊆ ℤ)
9492, 93unssd 4158 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
95 sneq 4602 . . . . . . . . . . . . . . . . 17 (𝑧 = 0 → {𝑧} = {0})
9617, 95eleqtrrid 2836 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 0 ∈ {𝑧})
9796ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ {𝑧})
9897olcd 874 . . . . . . . . . . . . . 14 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
9998, 84sylibr 234 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
10099orcd 873 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
101100, 68sylibr 234 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
10294, 101, 71syl2anc 584 . . . . . . . . . 10 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
10390, 91, 1023eqtr4rd 2776 . . . . . . . . 9 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
104103a1d 25 . . . . . . . 8 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
105104expimpd 453 . . . . . . 7 ((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
106105ex 412 . . . . . 6 (𝑧 = 0 → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
107 ioran 985 . . . . . . . 8 (¬ (0 ∈ 𝑦𝑧 = 0) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0))
108 df-nel 3031 . . . . . . . . 9 (0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦)
109 df-ne 2927 . . . . . . . . 9 (𝑧 ≠ 0 ↔ ¬ 𝑧 = 0)
110108, 109anbi12i 628 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0))
111107, 110bitr4i 278 . . . . . . 7 (¬ (0 ∈ 𝑦𝑧 = 0) ↔ (0 ∉ 𝑦𝑧 ≠ 0))
112 eldif 3927 . . . . . . . 8 (𝑛 ∈ (ℤ ∖ {0}) ↔ (𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ {0}))
113 velsn 4608 . . . . . . . . . . . 12 (𝑛 ∈ {0} ↔ 𝑛 = 0)
114113bicomi 224 . . . . . . . . . . 11 (𝑛 = 0 ↔ 𝑛 ∈ {0})
115114necon3abii 2972 . . . . . . . . . 10 (𝑛 ≠ 0 ↔ ¬ 𝑛 ∈ {0})
116 lcmfunsnlem2lem2 16616 . . . . . . . . . . . 12 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
117116exp520 1358 . . . . . . . . . . 11 (0 ∉ 𝑦 → (𝑧 ≠ 0 → (𝑛 ≠ 0 → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
118117imp 406 . . . . . . . . . 10 ((0 ∉ 𝑦𝑧 ≠ 0) → (𝑛 ≠ 0 → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
119115, 118biimtrrid 243 . . . . . . . . 9 ((0 ∉ 𝑦𝑧 ≠ 0) → (¬ 𝑛 ∈ {0} → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
120119impcomd 411 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0) → ((𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
121112, 120biimtrid 242 . . . . . . 7 ((0 ∉ 𝑦𝑧 ≠ 0) → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
122111, 121sylbi 217 . . . . . 6 (¬ (0 ∈ 𝑦𝑧 = 0) → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
12376, 106, 122ecase3 1032 . . . . 5 (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
12442, 123jaoi 857 . . . 4 ((𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
1258, 124sylbi 217 . . 3 (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
126125com12 32 . 2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
1275, 126ralrimi 3236 1 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wnel 3030  wral 3045  cdif 3914  cun 3915  wss 3917  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  0cn0 12449  cz 12536  cdvds 16229   lcm clcm 16565  lcmclcmf 16566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877  df-dvds 16230  df-gcd 16472  df-lcm 16567  df-lcmf 16568
This theorem is referenced by:  lcmfunsnlem  16618
  Copyright terms: Public domain W3C validator