| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecase | Structured version Visualization version GIF version | ||
| Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| ecase.1 | ⊢ (¬ 𝜑 → 𝜒) |
| ecase.2 | ⊢ (¬ 𝜓 → 𝜒) |
| ecase.3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ecase | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecase.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | ecase.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
| 4 | ecase.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 5 | 2, 3, 4 | pm2.61nii 184 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbccomlem 3849 prfi 9340 hashprb 14420 txindislem 23576 iswwlksnon 29840 iswspthsnon 29843 1to3vfriswmgr 30266 |
| Copyright terms: Public domain | W3C validator |