Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecase | Structured version Visualization version GIF version |
Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
ecase.1 | ⊢ (¬ 𝜑 → 𝜒) |
ecase.2 | ⊢ (¬ 𝜓 → 𝜒) |
ecase.3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ecase | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecase.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 416 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | ecase.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
4 | ecase.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
5 | 2, 3, 4 | pm2.61nii 187 | 1 ⊢ 𝜒 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: hashprb 13808 txindislem 22333 iswwlksnon 27738 iswspthsnon 27741 1to3vfriswmgr 28164 |
Copyright terms: Public domain | W3C validator |