|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ecase | Structured version Visualization version GIF version | ||
| Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.) | 
| Ref | Expression | 
|---|---|
| ecase.1 | ⊢ (¬ 𝜑 → 𝜒) | 
| ecase.2 | ⊢ (¬ 𝜓 → 𝜒) | 
| ecase.3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Ref | Expression | 
|---|---|
| ecase | ⊢ 𝜒 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ecase.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| 3 | ecase.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
| 4 | ecase.2 | . 2 ⊢ (¬ 𝜓 → 𝜒) | |
| 5 | 2, 3, 4 | pm2.61nii 184 | 1 ⊢ 𝜒 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: sbccomlem 3869 prfi 9363 hashprb 14436 txindislem 23641 iswwlksnon 29873 iswspthsnon 29876 1to3vfriswmgr 30299 | 
| Copyright terms: Public domain | W3C validator |