MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecase Structured version   Visualization version   GIF version

Theorem ecase 1031
Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.)
Hypotheses
Ref Expression
ecase.1 𝜑𝜒)
ecase.2 𝜓𝜒)
ecase.3 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ecase 𝜒

Proof of Theorem ecase
StepHypRef Expression
1 ecase.3 . . 3 ((𝜑𝜓) → 𝜒)
21ex 414 . 2 (𝜑 → (𝜓𝜒))
3 ecase.1 . 2 𝜑𝜒)
4 ecase.2 . 2 𝜓𝜒)
52, 3, 4pm2.61nii 184 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  hashprb  14157  txindislem  22829  iswwlksnon  28263  iswspthsnon  28266  1to3vfriswmgr  28689
  Copyright terms: Public domain W3C validator