Proof of Theorem ee223
Step | Hyp | Ref
| Expression |
1 | | ee223.2 |
. 2
⊢ (𝜑 → (𝜓 → 𝜃)) |
2 | | ee223.3 |
. . . . . . . 8
⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) |
3 | | ee223.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | | ee223.4 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) |
5 | 3, 4 | syl6 35 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝜓 → (𝜃 → (𝜂 → 𝜁)))) |
6 | 5 | com34 91 |
. . . . . . . . . 10
⊢ (𝜑 → (𝜓 → (𝜂 → (𝜃 → 𝜁)))) |
7 | 6 | com23 86 |
. . . . . . . . 9
⊢ (𝜑 → (𝜂 → (𝜓 → (𝜃 → 𝜁)))) |
8 | 7 | com12 32 |
. . . . . . . 8
⊢ (𝜂 → (𝜑 → (𝜓 → (𝜃 → 𝜁)))) |
9 | 2, 8 | syl8 76 |
. . . . . . 7
⊢ (𝜑 → (𝜓 → (𝜏 → (𝜑 → (𝜓 → (𝜃 → 𝜁)))))) |
10 | 9 | com34 91 |
. . . . . 6
⊢ (𝜑 → (𝜓 → (𝜑 → (𝜏 → (𝜓 → (𝜃 → 𝜁)))))) |
11 | 10 | pm2.43a 54 |
. . . . 5
⊢ (𝜑 → (𝜓 → (𝜏 → (𝜓 → (𝜃 → 𝜁))))) |
12 | 11 | com34 91 |
. . . 4
⊢ (𝜑 → (𝜓 → (𝜓 → (𝜏 → (𝜃 → 𝜁))))) |
13 | 12 | pm2.43d 53 |
. . 3
⊢ (𝜑 → (𝜓 → (𝜏 → (𝜃 → 𝜁)))) |
14 | 13 | com34 91 |
. 2
⊢ (𝜑 → (𝜓 → (𝜃 → (𝜏 → 𝜁)))) |
15 | 1, 14 | mpdd 43 |
1
⊢ (𝜑 → (𝜓 → (𝜏 → 𝜁))) |