![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e223 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e223.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e223.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
e223.3 | ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜂 ) |
e223.4 | ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) |
Ref | Expression |
---|---|
e223 | ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e223.1 | . . . . 5 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | 1 | in2 43670 | . . . 4 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
3 | 2 | in1 43636 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | e223.2 | . . . . 5 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
5 | 4 | in2 43670 | . . . 4 ⊢ ( 𝜑 ▶ (𝜓 → 𝜃) ) |
6 | 5 | in1 43636 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜃)) |
7 | e223.3 | . . . . . 6 ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜂 ) | |
8 | 7 | in3 43674 | . . . . 5 ⊢ ( 𝜑 , 𝜓 ▶ (𝜏 → 𝜂) ) |
9 | 8 | in2 43670 | . . . 4 ⊢ ( 𝜑 ▶ (𝜓 → (𝜏 → 𝜂)) ) |
10 | 9 | in1 43636 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) |
11 | e223.4 | . . 3 ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) | |
12 | 3, 6, 10, 11 | ee223 43699 | . 2 ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜁))) |
13 | 12 | dfvd3ir 43658 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜁 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd2 43642 ( wvd3 43652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 df-vd1 43635 df-vd2 43643 df-vd3 43655 |
This theorem is referenced by: tratrbVD 43926 |
Copyright terms: Public domain | W3C validator |