Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e223 Structured version   Visualization version   GIF version

Theorem e223 42255
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e223.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e223.2 (   𝜑   ,   𝜓   ▶   𝜃   )
e223.3 (   𝜑   ,   𝜓   ,   𝜏   ▶   𝜂   )
e223.4 (𝜒 → (𝜃 → (𝜂𝜁)))
Assertion
Ref Expression
e223 (   𝜑   ,   𝜓   ,   𝜏   ▶   𝜁   )

Proof of Theorem e223
StepHypRef Expression
1 e223.1 . . . . 5 (   𝜑   ,   𝜓   ▶   𝜒   )
21in2 42225 . . . 4 (   𝜑   ▶   (𝜓𝜒)   )
32in1 42191 . . 3 (𝜑 → (𝜓𝜒))
4 e223.2 . . . . 5 (   𝜑   ,   𝜓   ▶   𝜃   )
54in2 42225 . . . 4 (   𝜑   ▶   (𝜓𝜃)   )
65in1 42191 . . 3 (𝜑 → (𝜓𝜃))
7 e223.3 . . . . . 6 (   𝜑   ,   𝜓   ,   𝜏   ▶   𝜂   )
87in3 42229 . . . . 5 (   𝜑   ,   𝜓   ▶   (𝜏𝜂)   )
98in2 42225 . . . 4 (   𝜑   ▶   (𝜓 → (𝜏𝜂))   )
109in1 42191 . . 3 (𝜑 → (𝜓 → (𝜏𝜂)))
11 e223.4 . . 3 (𝜒 → (𝜃 → (𝜂𝜁)))
123, 6, 10, 11ee223 42254 . 2 (𝜑 → (𝜓 → (𝜏𝜁)))
1312dfvd3ir 42213 1 (   𝜑   ,   𝜓   ,   𝜏   ▶   𝜁   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 42197  (   wvd3 42207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-vd1 42190  df-vd2 42198  df-vd3 42210
This theorem is referenced by:  tratrbVD  42481
  Copyright terms: Public domain W3C validator