| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e223 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e223.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
| e223.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
| e223.3 | ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜂 ) |
| e223.4 | ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) |
| Ref | Expression |
|---|---|
| e223 | ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e223.1 | . . . . 5 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | 1 | in2 44625 | . . . 4 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
| 3 | 2 | in1 44591 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | e223.2 | . . . . 5 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
| 5 | 4 | in2 44625 | . . . 4 ⊢ ( 𝜑 ▶ (𝜓 → 𝜃) ) |
| 6 | 5 | in1 44591 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 7 | e223.3 | . . . . . 6 ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜂 ) | |
| 8 | 7 | in3 44629 | . . . . 5 ⊢ ( 𝜑 , 𝜓 ▶ (𝜏 → 𝜂) ) |
| 9 | 8 | in2 44625 | . . . 4 ⊢ ( 𝜑 ▶ (𝜓 → (𝜏 → 𝜂)) ) |
| 10 | 9 | in1 44591 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) |
| 11 | e223.4 | . . 3 ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) | |
| 12 | 3, 6, 10, 11 | ee223 44654 | . 2 ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜁))) |
| 13 | 12 | dfvd3ir 44613 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜁 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd2 44597 ( wvd3 44607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-vd1 44590 df-vd2 44598 df-vd3 44610 |
| This theorem is referenced by: tratrbVD 44881 |
| Copyright terms: Public domain | W3C validator |