![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version |
Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 111 rspct 3593 po2nr 5598 somo 5621 ordelord 6385 tz7.7 6389 funssres 6591 2elresin 6670 dffv2 6987 f1imass 7268 onint 7787 wfrlem12OLD 8334 wfrlem14OLD 8336 onfununi 8355 smoel 8374 tfrlem11 8402 tfr3 8413 omass 8594 nnmass 8638 sbthlem1 9099 pssnn 9184 php 9226 phpOLD 9238 inf3lem2 9644 cardne 9980 dfac2b 10145 indpi 10922 genpcd 11021 ltexprlem7 11057 addcanpr 11061 reclem4pr 11065 suplem2pr 11068 sup2 12192 nnunb 12490 uzwo 12917 xrub 13315 grpid 18923 lsmcss 21611 uniopn 22786 fclsss1 23913 fclsss2 23914 sltval2 27576 grpoid 30317 spansncvi 31449 pjnormssi 31965 sumdmdlem2 32216 acycgrcycl 34693 meran1 35831 bj-animbi 35970 currysetlem2 36363 bj-elsn0 36570 poimirlem31 37059 heicant 37063 hlhilhillem 41374 sn-sup2 41946 ee223 43996 eel2122old 44080 afv0nbfvbi 46454 fmtnoprmfac1lem 46827 |
Copyright terms: Public domain | W3C validator |