Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version |
Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 111 rspct 3527 po2nr 5456 somo 5479 ordelord 6191 tz7.7 6195 funssres 6379 2elresin 6451 dffv2 6747 f1imass 7014 onint 7509 wfrlem12 7976 wfrlem14 7978 onfununi 7988 smoel 8007 tfrlem11 8034 tfr3 8045 omass 8216 nnmass 8260 sbthlem1 8649 php 8723 pssnn 8738 inf3lem2 9125 cardne 9427 dfac2b 9590 indpi 10367 genpcd 10466 ltexprlem7 10502 addcanpr 10506 reclem4pr 10510 suplem2pr 10513 sup2 11633 nnunb 11930 uzwo 12351 xrub 12746 grpid 18206 lsmcss 20457 uniopn 21597 fclsss1 22722 fclsss2 22723 grpoid 28402 spansncvi 29534 pjnormssi 30050 sumdmdlem2 30301 acycgrcycl 32625 trpredrec 33324 sltval2 33424 meran1 34149 bj-animbi 34288 currysetlem2 34664 bj-elsn0 34850 poimirlem31 35368 heicant 35372 hlhilhillem 39536 sn-sup2 39936 ee223 41713 eel2122old 41797 afv0nbfvbi 44075 fmtnoprmfac1lem 44449 |
Copyright terms: Public domain | W3C validator |