![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version |
Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 111 rspct 3593 po2nr 5603 somo 5626 ordelord 6391 tz7.7 6395 funssres 6596 2elresin 6675 dffv2 6990 f1imass 7272 onint 7792 wfrlem12OLD 8339 wfrlem14OLD 8341 onfununi 8360 smoel 8379 tfrlem11 8407 tfr3 8418 omass 8599 nnmass 8643 sbthlem1 9106 pssnn 9191 php 9233 phpOLD 9245 inf3lem2 9652 cardne 9988 dfac2b 10153 indpi 10930 genpcd 11029 ltexprlem7 11065 addcanpr 11069 reclem4pr 11073 suplem2pr 11076 sup2 12200 nnunb 12498 uzwo 12925 xrub 13323 grpid 18937 lsmcss 21629 uniopn 22830 fclsss1 23957 fclsss2 23958 sltval2 27620 grpoid 30387 spansncvi 31519 pjnormssi 32035 sumdmdlem2 32286 acycgrcycl 34844 meran1 35982 bj-animbi 36121 currysetlem2 36514 bj-elsn0 36721 poimirlem31 37211 heicant 37215 hlhilhillem 41523 sn-sup2 42106 ee223 44155 eel2122old 44239 afv0nbfvbi 46611 fmtnoprmfac1lem 46983 |
Copyright terms: Public domain | W3C validator |