| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version | ||
| Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 111 rspct 3592 po2nr 5580 somo 5605 ordelord 6379 tz7.7 6383 funssres 6585 2elresin 6664 dffv2 6979 f1imass 7262 onint 7789 wfrlem12OLD 8339 wfrlem14OLD 8341 onfununi 8360 smoel 8379 tfrlem11 8407 tfr3 8418 omass 8597 nnmass 8641 sbthlem1 9102 pssnn 9187 php 9226 phpOLD 9236 inf3lem2 9648 cardne 9984 dfac2b 10150 indpi 10926 genpcd 11025 ltexprlem7 11061 addcanpr 11065 reclem4pr 11069 suplem2pr 11072 sup2 12203 nnunb 12502 uzwo 12932 xrub 13333 grpid 18963 lsmcss 21657 uniopn 22840 fclsss1 23965 fclsss2 23966 sltval2 27625 grpoid 30506 spansncvi 31638 pjnormssi 32154 sumdmdlem2 32405 acycgrcycl 35174 meran1 36434 bj-animbi 36582 currysetlem2 36971 bj-elsn0 37178 poimirlem31 37680 heicant 37684 hlhilhillem 41984 sn-sup2 42481 ee223 44626 eel2122old 44709 afv0nbfvbi 47147 fmtnoprmfac1lem 47545 |
| Copyright terms: Public domain | W3C validator |