Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version |
Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 111 rspct 3547 po2nr 5517 somo 5540 ordelord 6288 tz7.7 6292 funssres 6478 2elresin 6553 dffv2 6863 f1imass 7137 onint 7640 wfrlem12OLD 8151 wfrlem14OLD 8153 onfununi 8172 smoel 8191 tfrlem11 8219 tfr3 8230 omass 8411 nnmass 8455 sbthlem1 8870 pssnn 8951 php 8993 phpOLD 9005 inf3lem2 9387 cardne 9723 dfac2b 9886 indpi 10663 genpcd 10762 ltexprlem7 10798 addcanpr 10802 reclem4pr 10806 suplem2pr 10809 sup2 11931 nnunb 12229 uzwo 12651 xrub 13046 grpid 18615 lsmcss 20897 uniopn 22046 fclsss1 23173 fclsss2 23174 grpoid 28882 spansncvi 30014 pjnormssi 30530 sumdmdlem2 30781 acycgrcycl 33109 sltval2 33859 meran1 34600 bj-animbi 34739 currysetlem2 35137 bj-elsn0 35326 poimirlem31 35808 heicant 35812 hlhilhillem 39978 sn-sup2 40439 ee223 42254 eel2122old 42338 afv0nbfvbi 44643 fmtnoprmfac1lem 45016 |
Copyright terms: Public domain | W3C validator |