![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version |
Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 111 rspct 3598 po2nr 5602 somo 5625 ordelord 6386 tz7.7 6390 funssres 6592 2elresin 6671 dffv2 6986 f1imass 7265 onint 7780 wfrlem12OLD 8322 wfrlem14OLD 8324 onfununi 8343 smoel 8362 tfrlem11 8390 tfr3 8401 omass 8582 nnmass 8626 sbthlem1 9085 pssnn 9170 php 9212 phpOLD 9224 inf3lem2 9626 cardne 9962 dfac2b 10127 indpi 10904 genpcd 11003 ltexprlem7 11039 addcanpr 11043 reclem4pr 11047 suplem2pr 11050 sup2 12174 nnunb 12472 uzwo 12899 xrub 13295 grpid 18896 lsmcss 21464 uniopn 22619 fclsss1 23746 fclsss2 23747 sltval2 27383 grpoid 30028 spansncvi 31160 pjnormssi 31676 sumdmdlem2 31927 acycgrcycl 34424 meran1 35599 bj-animbi 35738 currysetlem2 36132 bj-elsn0 36339 poimirlem31 36822 heicant 36826 hlhilhillem 41138 sn-sup2 41644 ee223 43697 eel2122old 43781 afv0nbfvbi 46158 fmtnoprmfac1lem 46531 |
Copyright terms: Public domain | W3C validator |