| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version | ||
| Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 111 rspct 3560 po2nr 5543 somo 5568 ordelord 6336 tz7.7 6340 funssres 6533 2elresin 6610 dffv2 6926 f1imass 7207 onint 7732 onfununi 8270 smoel 8289 tfrlem11 8316 tfr3 8327 omass 8504 nnmass 8548 sbthlem1 9010 pssnn 9088 php 9126 inf3lem2 9529 cardne 9868 dfac2b 10032 indpi 10808 genpcd 10907 ltexprlem7 10943 addcanpr 10947 reclem4pr 10951 suplem2pr 10954 sup2 12088 nnunb 12387 uzwo 12819 xrub 13221 grpid 18898 lsmcss 21639 uniopn 22822 fclsss1 23947 fclsss2 23948 sltval2 27605 grpoid 30511 spansncvi 31643 pjnormssi 32159 sumdmdlem2 32410 acycgrcycl 35202 meran1 36466 bj-animbi 36614 currysetlem2 37003 bj-elsn0 37210 poimirlem31 37701 heicant 37705 hlhilhillem 42069 sn-sup2 42599 ee223 44741 eel2122old 44824 afv0nbfvbi 47265 fmtnoprmfac1lem 47678 |
| Copyright terms: Public domain | W3C validator |