![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version |
Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 111 rspct 3598 po2nr 5601 somo 5624 ordelord 6383 tz7.7 6387 funssres 6589 2elresin 6668 dffv2 6983 f1imass 7259 onint 7774 wfrlem12OLD 8316 wfrlem14OLD 8318 onfununi 8337 smoel 8356 tfrlem11 8384 tfr3 8395 omass 8576 nnmass 8620 sbthlem1 9079 pssnn 9164 php 9206 phpOLD 9218 inf3lem2 9620 cardne 9956 dfac2b 10121 indpi 10898 genpcd 10997 ltexprlem7 11033 addcanpr 11037 reclem4pr 11041 suplem2pr 11044 sup2 12166 nnunb 12464 uzwo 12891 xrub 13287 grpid 18856 lsmcss 21236 uniopn 22390 fclsss1 23517 fclsss2 23518 sltval2 27148 grpoid 29760 spansncvi 30892 pjnormssi 31408 sumdmdlem2 31659 acycgrcycl 34126 meran1 35284 bj-animbi 35423 currysetlem2 35817 bj-elsn0 36024 poimirlem31 36507 heicant 36511 hlhilhillem 40823 sn-sup2 41338 ee223 43380 eel2122old 43464 afv0nbfvbi 45845 fmtnoprmfac1lem 46218 |
Copyright terms: Public domain | W3C validator |