| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version | ||
| Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 111 rspct 3565 po2nr 5545 somo 5570 ordelord 6333 tz7.7 6337 funssres 6530 2elresin 6607 dffv2 6922 f1imass 7205 onint 7730 onfununi 8271 smoel 8290 tfrlem11 8317 tfr3 8328 omass 8505 nnmass 8549 sbthlem1 9011 pssnn 9092 php 9131 inf3lem2 9544 cardne 9880 dfac2b 10044 indpi 10820 genpcd 10919 ltexprlem7 10955 addcanpr 10959 reclem4pr 10963 suplem2pr 10966 sup2 12099 nnunb 12398 uzwo 12830 xrub 13232 grpid 18872 lsmcss 21617 uniopn 22800 fclsss1 23925 fclsss2 23926 sltval2 27584 grpoid 30482 spansncvi 31614 pjnormssi 32130 sumdmdlem2 32381 acycgrcycl 35119 meran1 36384 bj-animbi 36532 currysetlem2 36921 bj-elsn0 37128 poimirlem31 37630 heicant 37634 hlhilhillem 41939 sn-sup2 42464 ee223 44608 eel2122old 44691 afv0nbfvbi 47136 fmtnoprmfac1lem 47549 |
| Copyright terms: Public domain | W3C validator |