Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version |
Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 111 rspct 3537 po2nr 5508 somo 5531 ordelord 6273 tz7.7 6277 funssres 6462 2elresin 6537 dffv2 6845 f1imass 7118 onint 7617 wfrlem12OLD 8122 wfrlem14OLD 8124 onfununi 8143 smoel 8162 tfrlem11 8190 tfr3 8201 omass 8373 nnmass 8417 sbthlem1 8823 php 8897 pssnn 8913 inf3lem2 9317 trpredrec 9415 cardne 9654 dfac2b 9817 indpi 10594 genpcd 10693 ltexprlem7 10729 addcanpr 10733 reclem4pr 10737 suplem2pr 10740 sup2 11861 nnunb 12159 uzwo 12580 xrub 12975 grpid 18530 lsmcss 20809 uniopn 21954 fclsss1 23081 fclsss2 23082 grpoid 28783 spansncvi 29915 pjnormssi 30431 sumdmdlem2 30682 acycgrcycl 33009 sltval2 33786 meran1 34527 bj-animbi 34666 currysetlem2 35064 bj-elsn0 35253 poimirlem31 35735 heicant 35739 hlhilhillem 39905 sn-sup2 40360 ee223 42143 eel2122old 42227 afv0nbfvbi 44530 fmtnoprmfac1lem 44904 |
Copyright terms: Public domain | W3C validator |