| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version | ||
| Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 111 rspct 3561 po2nr 5536 somo 5561 ordelord 6324 tz7.7 6328 funssres 6521 2elresin 6598 dffv2 6912 f1imass 7193 onint 7718 onfununi 8256 smoel 8275 tfrlem11 8302 tfr3 8313 omass 8490 nnmass 8534 sbthlem1 8995 pssnn 9073 php 9111 inf3lem2 9514 cardne 9850 dfac2b 10014 indpi 10790 genpcd 10889 ltexprlem7 10925 addcanpr 10929 reclem4pr 10933 suplem2pr 10936 sup2 12070 nnunb 12369 uzwo 12801 xrub 13203 grpid 18880 lsmcss 21622 uniopn 22805 fclsss1 23930 fclsss2 23931 sltval2 27588 grpoid 30490 spansncvi 31622 pjnormssi 32138 sumdmdlem2 32389 acycgrcycl 35159 meran1 36424 bj-animbi 36572 currysetlem2 36961 bj-elsn0 37168 poimirlem31 37670 heicant 37674 hlhilhillem 41978 sn-sup2 42503 ee223 44646 eel2122old 44729 afv0nbfvbi 47161 fmtnoprmfac1lem 47574 |
| Copyright terms: Public domain | W3C validator |