![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version |
Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 111 rspct 3621 po2nr 5622 somo 5646 ordelord 6417 tz7.7 6421 funssres 6622 2elresin 6701 dffv2 7017 f1imass 7301 onint 7826 wfrlem12OLD 8376 wfrlem14OLD 8378 onfununi 8397 smoel 8416 tfrlem11 8444 tfr3 8455 omass 8636 nnmass 8680 sbthlem1 9149 pssnn 9234 php 9273 phpOLD 9285 inf3lem2 9698 cardne 10034 dfac2b 10200 indpi 10976 genpcd 11075 ltexprlem7 11111 addcanpr 11115 reclem4pr 11119 suplem2pr 11122 sup2 12251 nnunb 12549 uzwo 12976 xrub 13374 grpid 19015 lsmcss 21733 uniopn 22924 fclsss1 24051 fclsss2 24052 sltval2 27719 grpoid 30552 spansncvi 31684 pjnormssi 32200 sumdmdlem2 32451 acycgrcycl 35115 meran1 36377 bj-animbi 36525 currysetlem2 36914 bj-elsn0 37121 poimirlem31 37611 heicant 37615 hlhilhillem 41921 sn-sup2 42447 ee223 44605 eel2122old 44689 afv0nbfvbi 47066 fmtnoprmfac1lem 47438 |
Copyright terms: Public domain | W3C validator |