| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version | ||
| Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 111 rspct 3574 po2nr 5560 somo 5585 ordelord 6354 tz7.7 6358 funssres 6560 2elresin 6639 dffv2 6956 f1imass 7239 onint 7766 onfununi 8310 smoel 8329 tfrlem11 8356 tfr3 8367 omass 8544 nnmass 8588 sbthlem1 9051 pssnn 9132 php 9171 inf3lem2 9582 cardne 9918 dfac2b 10084 indpi 10860 genpcd 10959 ltexprlem7 10995 addcanpr 10999 reclem4pr 11003 suplem2pr 11006 sup2 12139 nnunb 12438 uzwo 12870 xrub 13272 grpid 18907 lsmcss 21601 uniopn 22784 fclsss1 23909 fclsss2 23910 sltval2 27568 grpoid 30449 spansncvi 31581 pjnormssi 32097 sumdmdlem2 32348 acycgrcycl 35134 meran1 36399 bj-animbi 36547 currysetlem2 36936 bj-elsn0 37143 poimirlem31 37645 heicant 37649 hlhilhillem 41954 sn-sup2 42479 ee223 44624 eel2122old 44707 afv0nbfvbi 47152 fmtnoprmfac1lem 47565 |
| Copyright terms: Public domain | W3C validator |