![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version |
Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: loolin 111 rspct 3608 po2nr 5611 somo 5635 ordelord 6408 tz7.7 6412 funssres 6612 2elresin 6690 dffv2 7004 f1imass 7284 onint 7810 wfrlem12OLD 8359 wfrlem14OLD 8361 onfununi 8380 smoel 8399 tfrlem11 8427 tfr3 8438 omass 8617 nnmass 8661 sbthlem1 9122 pssnn 9207 php 9245 phpOLD 9257 inf3lem2 9667 cardne 10003 dfac2b 10169 indpi 10945 genpcd 11044 ltexprlem7 11080 addcanpr 11084 reclem4pr 11088 suplem2pr 11091 sup2 12222 nnunb 12520 uzwo 12951 xrub 13351 grpid 19006 lsmcss 21728 uniopn 22919 fclsss1 24046 fclsss2 24047 sltval2 27716 grpoid 30549 spansncvi 31681 pjnormssi 32197 sumdmdlem2 32448 acycgrcycl 35132 meran1 36394 bj-animbi 36542 currysetlem2 36931 bj-elsn0 37138 poimirlem31 37638 heicant 37642 hlhilhillem 41947 sn-sup2 42478 ee223 44632 eel2122old 44716 afv0nbfvbi 47101 fmtnoprmfac1lem 47489 |
Copyright terms: Public domain | W3C validator |