| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43d | Structured version Visualization version GIF version | ||
| Description: Deduction absorbing redundant antecedent. Deduction associated with pm2.43 56 and pm2.43i 52. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43d.1 | ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpdi 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: loolin 111 rspct 3577 po2nr 5563 somo 5588 ordelord 6357 tz7.7 6361 funssres 6563 2elresin 6642 dffv2 6959 f1imass 7242 onint 7769 onfununi 8313 smoel 8332 tfrlem11 8359 tfr3 8370 omass 8547 nnmass 8591 sbthlem1 9057 pssnn 9138 php 9177 inf3lem2 9589 cardne 9925 dfac2b 10091 indpi 10867 genpcd 10966 ltexprlem7 11002 addcanpr 11006 reclem4pr 11010 suplem2pr 11013 sup2 12146 nnunb 12445 uzwo 12877 xrub 13279 grpid 18914 lsmcss 21608 uniopn 22791 fclsss1 23916 fclsss2 23917 sltval2 27575 grpoid 30456 spansncvi 31588 pjnormssi 32104 sumdmdlem2 32355 acycgrcycl 35141 meran1 36406 bj-animbi 36554 currysetlem2 36943 bj-elsn0 37150 poimirlem31 37652 heicant 37656 hlhilhillem 41961 sn-sup2 42486 ee223 44631 eel2122old 44714 afv0nbfvbi 47156 fmtnoprmfac1lem 47569 |
| Copyright terms: Public domain | W3C validator |