| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version | ||
| Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) | 
| Ref | Expression | 
|---|---|
| mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| Ref | Expression | 
|---|---|
| mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) | 
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 | 
| This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 7014 oprabidw 7443 oprabid 7444 frxp 8132 smo11 8385 oaordex 8577 oaass 8580 omordi 8585 oeordsuc 8613 nnmordi 8650 nnmord 8651 nnaordex 8657 brecop 8831 elfiun 9451 ordiso2 9536 ordtypelem7 9545 cantnf 9714 coftr 10294 domtriomlem 10463 prlem936 11068 zindd 12701 supxrun 13339 ccatopth2 14736 cau3lem 15374 climcau 15688 dvdsabseq 16331 divalglem8 16418 lcmf 16651 dirtr 18615 frgpnabllem1 19858 dprddisj2 20026 znrrg 21537 opnnei 23073 restntr 23135 lpcls 23317 comppfsc 23485 ufilmax 23860 ufileu 23872 flimfnfcls 23981 alexsubALTlem4 24003 qustgplem 24074 metrest 24480 caubl 25277 ulmcau 26373 ulmcn 26377 nodenselem8 27671 usgr2wlkneq 29703 erclwwlksym 29967 erclwwlktr 29968 erclwwlknsym 30016 erclwwlkntr 30017 sumdmdlem 32364 bnj1280 34968 fundmpss 35701 dfon2lem8 35725 ifscgr 35979 btwnconn1lem11 36032 btwnconn2 36037 finminlem 36253 opnrebl2 36256 fvineqsneq 37347 poimirlem21 37582 poimirlem26 37587 filbcmb 37681 seqpo 37688 mpobi123f 38103 mptbi12f 38107 ac6s6 38113 dia2dimlem12 41011 aks6d1c1p2 42044 ntrk0kbimka 43990 truniALT 44494 onfrALTlem3 44497 ee223 44587 ormklocald 46822 paireqne 47432 fmtnofac2lem 47489 setrec1lem4 49193 | 
| Copyright terms: Public domain | W3C validator |