| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version | ||
| Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 6994 oprabidw 7425 oprabid 7426 frxp 8114 smo11 8342 oaordex 8533 oaass 8536 omordi 8541 oeordsuc 8569 nnmordi 8606 nnmord 8607 nnaordex 8613 brecop 8787 elfiun 9399 ordiso2 9486 ordtypelem7 9495 cantnf 9664 coftr 10244 domtriomlem 10413 prlem936 11018 zindd 12651 supxrun 13289 ccatopth2 14692 cau3lem 15330 climcau 15644 dvdsabseq 16289 divalglem8 16376 lcmf 16609 dirtr 18567 frgpnabllem1 19809 dprddisj2 19977 znrrg 21481 opnnei 23013 restntr 23075 lpcls 23257 comppfsc 23425 ufilmax 23800 ufileu 23812 flimfnfcls 23921 alexsubALTlem4 23943 qustgplem 24014 metrest 24418 caubl 25215 ulmcau 26311 ulmcn 26315 nodenselem8 27610 usgr2wlkneq 29693 erclwwlksym 29957 erclwwlktr 29958 erclwwlknsym 30006 erclwwlkntr 30007 sumdmdlem 32354 bnj1280 35018 fundmpss 35751 dfon2lem8 35775 ifscgr 36029 btwnconn1lem11 36082 btwnconn2 36087 finminlem 36303 opnrebl2 36306 fvineqsneq 37397 poimirlem21 37632 poimirlem26 37637 filbcmb 37731 seqpo 37738 mpobi123f 38153 mptbi12f 38157 ac6s6 38163 dia2dimlem12 41061 aks6d1c1p2 42089 ntrk0kbimka 44000 truniALT 44503 onfrALTlem3 44506 ee223 44596 ormklocald 46845 paireqne 47467 fmtnofac2lem 47524 setrec1lem4 49556 |
| Copyright terms: Public domain | W3C validator |