| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version | ||
| Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 6987 oprabidw 7418 oprabid 7419 frxp 8105 smo11 8333 oaordex 8522 oaass 8525 omordi 8530 oeordsuc 8558 nnmordi 8595 nnmord 8596 nnaordex 8602 brecop 8783 elfiun 9381 ordiso2 9468 ordtypelem7 9477 cantnf 9646 coftr 10226 domtriomlem 10395 prlem936 11000 zindd 12635 supxrun 13276 ccatopth2 14682 cau3lem 15321 climcau 15637 dvdsabseq 16283 divalglem8 16370 lcmf 16603 dirtr 18561 frgpnabllem1 19803 dprddisj2 19971 znrrg 21475 opnnei 23007 restntr 23069 lpcls 23251 comppfsc 23419 ufilmax 23794 ufileu 23806 flimfnfcls 23915 alexsubALTlem4 23937 qustgplem 24008 metrest 24412 caubl 25208 ulmcau 26304 ulmcn 26308 nodenselem8 27603 usgr2wlkneq 29686 erclwwlksym 29950 erclwwlktr 29951 erclwwlknsym 29999 erclwwlkntr 30000 sumdmdlem 32347 bnj1280 35010 antnestlaw2 35679 fundmpss 35754 dfon2lem8 35778 ifscgr 36032 btwnconn1lem11 36085 btwnconn2 36090 finminlem 36306 opnrebl2 36309 fvineqsneq 37400 poimirlem21 37635 poimirlem26 37640 filbcmb 37734 seqpo 37741 mpobi123f 38156 mptbi12f 38160 ac6s6 38166 dia2dimlem12 41069 aks6d1c1p2 42097 ntrk0kbimka 44028 truniALT 44531 onfrALTlem3 44534 ee223 44624 ormklocald 46872 paireqne 47512 fmtnofac2lem 47569 setrec1lem4 49679 |
| Copyright terms: Public domain | W3C validator |