| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version | ||
| Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 6969 oprabidw 7400 oprabid 7401 frxp 8082 smo11 8310 oaordex 8499 oaass 8502 omordi 8507 oeordsuc 8535 nnmordi 8572 nnmord 8573 nnaordex 8579 brecop 8760 elfiun 9357 ordiso2 9444 ordtypelem7 9453 cantnf 9622 coftr 10202 domtriomlem 10371 prlem936 10976 zindd 12611 supxrun 13252 ccatopth2 14658 cau3lem 15297 climcau 15613 dvdsabseq 16259 divalglem8 16346 lcmf 16579 dirtr 18537 frgpnabllem1 19779 dprddisj2 19947 znrrg 21451 opnnei 22983 restntr 23045 lpcls 23227 comppfsc 23395 ufilmax 23770 ufileu 23782 flimfnfcls 23891 alexsubALTlem4 23913 qustgplem 23984 metrest 24388 caubl 25184 ulmcau 26280 ulmcn 26284 nodenselem8 27579 usgr2wlkneq 29659 erclwwlksym 29923 erclwwlktr 29924 erclwwlknsym 29972 erclwwlkntr 29973 sumdmdlem 32320 bnj1280 34983 antnestlaw2 35652 fundmpss 35727 dfon2lem8 35751 ifscgr 36005 btwnconn1lem11 36058 btwnconn2 36063 finminlem 36279 opnrebl2 36282 fvineqsneq 37373 poimirlem21 37608 poimirlem26 37613 filbcmb 37707 seqpo 37714 mpobi123f 38129 mptbi12f 38133 ac6s6 38139 dia2dimlem12 41042 aks6d1c1p2 42070 ntrk0kbimka 44001 truniALT 44504 onfrALTlem3 44507 ee223 44597 ormklocald 46845 paireqne 47485 fmtnofac2lem 47542 setrec1lem4 49652 |
| Copyright terms: Public domain | W3C validator |