![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version |
Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 7018 oprabidw 7440 oprabid 7441 frxp 8112 smo11 8364 oaordex 8558 oaass 8561 omordi 8566 oeordsuc 8594 nnmordi 8631 nnmord 8632 nnaordex 8638 brecop 8804 findcard2OLD 9284 elfiun 9425 ordiso2 9510 ordtypelem7 9519 cantnf 9688 coftr 10268 domtriomlem 10437 prlem936 11042 zindd 12663 supxrun 13295 ccatopth2 14667 cau3lem 15301 climcau 15617 dvdsabseq 16256 divalglem8 16343 lcmf 16570 dirtr 18555 frgpnabllem1 19741 dprddisj2 19909 znrrg 21121 opnnei 22624 restntr 22686 lpcls 22868 comppfsc 23036 ufilmax 23411 ufileu 23423 flimfnfcls 23532 alexsubALTlem4 23554 qustgplem 23625 metrest 24033 caubl 24825 ulmcau 25907 ulmcn 25911 nodenselem8 27194 usgr2wlkneq 29013 erclwwlksym 29274 erclwwlktr 29275 erclwwlknsym 29323 erclwwlkntr 29324 sumdmdlem 31671 bnj1280 34031 fundmpss 34738 dfon2lem8 34762 ifscgr 35016 btwnconn1lem11 35069 btwnconn2 35074 finminlem 35203 opnrebl2 35206 fvineqsneq 36293 poimirlem21 36509 poimirlem26 36514 filbcmb 36608 seqpo 36615 mpobi123f 37030 mptbi12f 37034 ac6s6 37040 dia2dimlem12 39946 ntrk0kbimka 42790 truniALT 43302 onfrALTlem3 43305 ee223 43395 paireqne 46179 fmtnofac2lem 46236 setrec1lem4 47735 |
Copyright terms: Public domain | W3C validator |