![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version |
Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 7007 oprabidw 7432 oprabid 7433 frxp 8106 smo11 8359 oaordex 8553 oaass 8556 omordi 8561 oeordsuc 8589 nnmordi 8626 nnmord 8627 nnaordex 8633 brecop 8800 findcard2OLD 9280 elfiun 9421 ordiso2 9506 ordtypelem7 9515 cantnf 9684 coftr 10264 domtriomlem 10433 prlem936 11038 zindd 12660 supxrun 13292 ccatopth2 14664 cau3lem 15298 climcau 15614 dvdsabseq 16253 divalglem8 16340 lcmf 16567 dirtr 18557 frgpnabllem1 19783 dprddisj2 19951 znrrg 21428 opnnei 22946 restntr 23008 lpcls 23190 comppfsc 23358 ufilmax 23733 ufileu 23745 flimfnfcls 23854 alexsubALTlem4 23876 qustgplem 23947 metrest 24355 caubl 25158 ulmcau 26248 ulmcn 26252 nodenselem8 27540 usgr2wlkneq 29482 erclwwlksym 29743 erclwwlktr 29744 erclwwlknsym 29792 erclwwlkntr 29793 sumdmdlem 32140 bnj1280 34520 fundmpss 35233 dfon2lem8 35257 ifscgr 35511 btwnconn1lem11 35564 btwnconn2 35569 finminlem 35693 opnrebl2 35696 fvineqsneq 36783 poimirlem21 36999 poimirlem26 37004 filbcmb 37098 seqpo 37105 mpobi123f 37520 mptbi12f 37524 ac6s6 37530 dia2dimlem12 40436 ntrk0kbimka 43279 truniALT 43791 onfrALTlem3 43794 ee223 43884 paireqne 46664 fmtnofac2lem 46721 setrec1lem4 47923 |
Copyright terms: Public domain | W3C validator |