![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version |
Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 7042 oprabidw 7469 oprabid 7470 frxp 8159 smo11 8412 oaordex 8604 oaass 8607 omordi 8612 oeordsuc 8640 nnmordi 8677 nnmord 8678 nnaordex 8684 brecop 8858 elfiun 9477 ordiso2 9562 ordtypelem7 9571 cantnf 9740 coftr 10320 domtriomlem 10489 prlem936 11094 zindd 12726 supxrun 13364 ccatopth2 14761 cau3lem 15399 climcau 15713 dvdsabseq 16356 divalglem8 16443 lcmf 16676 dirtr 18669 frgpnabllem1 19915 dprddisj2 20083 znrrg 21611 opnnei 23153 restntr 23215 lpcls 23397 comppfsc 23565 ufilmax 23940 ufileu 23952 flimfnfcls 24061 alexsubALTlem4 24083 qustgplem 24154 metrest 24562 caubl 25367 ulmcau 26464 ulmcn 26468 nodenselem8 27762 usgr2wlkneq 29802 erclwwlksym 30066 erclwwlktr 30067 erclwwlknsym 30115 erclwwlkntr 30116 sumdmdlem 32463 bnj1280 35027 fundmpss 35761 dfon2lem8 35785 ifscgr 36039 btwnconn1lem11 36092 btwnconn2 36097 finminlem 36313 opnrebl2 36316 fvineqsneq 37407 poimirlem21 37640 poimirlem26 37645 filbcmb 37739 seqpo 37746 mpobi123f 38161 mptbi12f 38165 ac6s6 38171 dia2dimlem12 41070 aks6d1c1p2 42103 ntrk0kbimka 44043 truniALT 44552 onfrALTlem3 44555 ee223 44645 paireqne 47462 fmtnofac2lem 47519 setrec1lem4 49044 |
Copyright terms: Public domain | W3C validator |