![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version |
Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 7046 oprabidw 7476 oprabid 7477 frxp 8163 smo11 8416 oaordex 8610 oaass 8613 omordi 8618 oeordsuc 8646 nnmordi 8683 nnmord 8684 nnaordex 8690 brecop 8864 elfiun 9495 ordiso2 9580 ordtypelem7 9589 cantnf 9758 coftr 10338 domtriomlem 10507 prlem936 11112 zindd 12740 supxrun 13374 ccatopth2 14761 cau3lem 15399 climcau 15715 dvdsabseq 16355 divalglem8 16442 lcmf 16674 dirtr 18667 frgpnabllem1 19910 dprddisj2 20078 znrrg 21602 opnnei 23142 restntr 23204 lpcls 23386 comppfsc 23554 ufilmax 23929 ufileu 23941 flimfnfcls 24050 alexsubALTlem4 24072 qustgplem 24143 metrest 24551 caubl 25354 ulmcau 26448 ulmcn 26452 nodenselem8 27745 usgr2wlkneq 29783 erclwwlksym 30044 erclwwlktr 30045 erclwwlknsym 30093 erclwwlkntr 30094 sumdmdlem 32441 bnj1280 34988 fundmpss 35722 dfon2lem8 35746 ifscgr 36000 btwnconn1lem11 36053 btwnconn2 36058 finminlem 36232 opnrebl2 36235 fvineqsneq 37327 poimirlem21 37550 poimirlem26 37555 filbcmb 37649 seqpo 37656 mpobi123f 38071 mptbi12f 38075 ac6s6 38081 dia2dimlem12 40981 aks6d1c1p2 42015 ntrk0kbimka 43942 truniALT 44453 onfrALTlem3 44456 ee223 44546 paireqne 47318 fmtnofac2lem 47375 setrec1lem4 48701 |
Copyright terms: Public domain | W3C validator |