![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version |
Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 6441 oprabid 6822 frxp 7438 smo11 7614 oaordex 7792 oaass 7795 omordi 7800 oeordsuc 7828 nnmordi 7865 nnmord 7866 nnaordex 7872 brecop 7992 findcard2 8356 elfiun 8492 ordiso2 8576 ordtypelem7 8585 cantnf 8754 coftr 9297 domtriomlem 9466 prlem936 10071 zindd 11680 supxrun 12351 ccatopth2 13680 cau3lem 14302 climcau 14609 dvdsabseq 15244 divalglem8 15331 lcmf 15554 dirtr 17444 frgpnabllem1 18483 dprddisj2 18646 znrrg 20129 opnnei 21145 restntr 21207 lpcls 21389 comppfsc 21556 ufilmax 21931 ufileu 21943 flimfnfcls 22052 alexsubALTlem4 22074 qustgplem 22144 metrest 22549 caubl 23325 ulmcau 24369 ulmcn 24373 usgr2wlkneq 26887 erclwwlksym 27171 erclwwlktr 27172 erclwwlknsym 27228 erclwwlkntr 27229 sumdmdlem 29617 bnj1280 31426 fundmpss 32002 dfon2lem8 32031 nodenselem8 32178 ifscgr 32488 btwnconn1lem11 32541 btwnconn2 32546 finminlem 32649 opnrebl2 32653 poimirlem21 33763 poimirlem26 33768 filbcmb 33867 seqpo 33875 mpt2bi123f 34303 mptbi12f 34307 ac6s6 34312 dia2dimlem12 36885 ntrk0kbimka 38863 truniALT 39276 onfrALTlem3 39284 ee223 39384 fmtnofac2lem 42008 setrec1lem4 42965 |
Copyright terms: Public domain | W3C validator |