| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version | ||
| Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 6943 oprabidw 7372 oprabid 7373 frxp 8051 smo11 8279 oaordex 8468 oaass 8471 omordi 8476 oeordsuc 8504 nnmordi 8541 nnmord 8542 nnaordex 8548 brecop 8729 elfiun 9309 ordiso2 9396 ordtypelem7 9405 cantnf 9578 coftr 10159 domtriomlem 10328 prlem936 10933 zindd 12569 supxrun 13210 ccatopth2 14619 cau3lem 15257 climcau 15573 dvdsabseq 16219 divalglem8 16306 lcmf 16539 dirtr 18503 frgpnabllem1 19780 dprddisj2 19948 znrrg 21497 opnnei 23030 restntr 23092 lpcls 23274 comppfsc 23442 ufilmax 23817 ufileu 23829 flimfnfcls 23938 alexsubALTlem4 23960 qustgplem 24031 metrest 24434 caubl 25230 ulmcau 26326 ulmcn 26330 nodenselem8 27625 usgr2wlkneq 29729 erclwwlksym 29993 erclwwlktr 29994 erclwwlknsym 30042 erclwwlkntr 30043 sumdmdlem 32390 bnj1280 35024 antnestlaw2 35728 fundmpss 35803 dfon2lem8 35824 ifscgr 36078 btwnconn1lem11 36131 btwnconn2 36136 finminlem 36352 opnrebl2 36355 fvineqsneq 37446 poimirlem21 37681 poimirlem26 37686 filbcmb 37780 seqpo 37787 mpobi123f 38202 mptbi12f 38206 ac6s6 38212 dia2dimlem12 41114 aks6d1c1p2 42142 ntrk0kbimka 44072 truniALT 44574 onfrALTlem3 44577 ee223 44667 ormklocald 46912 paireqne 47542 fmtnofac2lem 47599 setrec1lem4 49722 |
| Copyright terms: Public domain | W3C validator |