| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version | ||
| Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 6957 oprabidw 7386 oprabid 7387 frxp 8065 smo11 8293 oaordex 8482 oaass 8485 omordi 8490 oeordsuc 8518 nnmordi 8555 nnmord 8556 nnaordex 8562 brecop 8743 elfiun 9325 ordiso2 9412 ordtypelem7 9421 cantnf 9594 coftr 10175 domtriomlem 10344 prlem936 10949 zindd 12584 supxrun 13222 ccatopth2 14631 cau3lem 15269 climcau 15585 dvdsabseq 16231 divalglem8 16318 lcmf 16551 dirtr 18516 frgpnabllem1 19793 dprddisj2 19961 znrrg 21511 opnnei 23055 restntr 23117 lpcls 23299 comppfsc 23467 ufilmax 23842 ufileu 23854 flimfnfcls 23963 alexsubALTlem4 23985 qustgplem 24056 metrest 24459 caubl 25255 ulmcau 26351 ulmcn 26355 nodenselem8 27650 usgr2wlkneq 29755 erclwwlksym 30022 erclwwlktr 30023 erclwwlknsym 30071 erclwwlkntr 30072 sumdmdlem 32419 bnj1280 35104 antnestlaw2 35808 fundmpss 35883 dfon2lem8 35904 ifscgr 36160 btwnconn1lem11 36213 btwnconn2 36218 finminlem 36434 opnrebl2 36437 fvineqsneq 37529 poimirlem21 37754 poimirlem26 37759 filbcmb 37853 seqpo 37860 mpobi123f 38275 mptbi12f 38279 ac6s6 38285 dia2dimlem12 41247 aks6d1c1p2 42275 ntrk0kbimka 44196 truniALT 44698 onfrALTlem3 44701 ee223 44791 ormklocald 47034 paireqne 47673 fmtnofac2lem 47730 setrec1lem4 49851 |
| Copyright terms: Public domain | W3C validator |