![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version |
Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 7015 oprabidw 7437 oprabid 7438 frxp 8109 smo11 8361 oaordex 8555 oaass 8558 omordi 8563 oeordsuc 8591 nnmordi 8628 nnmord 8629 nnaordex 8635 brecop 8801 findcard2OLD 9281 elfiun 9422 ordiso2 9507 ordtypelem7 9516 cantnf 9685 coftr 10265 domtriomlem 10434 prlem936 11039 zindd 12660 supxrun 13292 ccatopth2 14664 cau3lem 15298 climcau 15614 dvdsabseq 16253 divalglem8 16340 lcmf 16567 dirtr 18552 frgpnabllem1 19736 dprddisj2 19904 znrrg 21113 opnnei 22616 restntr 22678 lpcls 22860 comppfsc 23028 ufilmax 23403 ufileu 23415 flimfnfcls 23524 alexsubALTlem4 23546 qustgplem 23617 metrest 24025 caubl 24817 ulmcau 25899 ulmcn 25903 nodenselem8 27184 usgr2wlkneq 29003 erclwwlksym 29264 erclwwlktr 29265 erclwwlknsym 29313 erclwwlkntr 29314 sumdmdlem 31659 bnj1280 34020 fundmpss 34727 dfon2lem8 34751 ifscgr 35005 btwnconn1lem11 35058 btwnconn2 35063 finminlem 35192 opnrebl2 35195 fvineqsneq 36282 poimirlem21 36498 poimirlem26 36503 filbcmb 36597 seqpo 36604 mpobi123f 37019 mptbi12f 37023 ac6s6 37029 dia2dimlem12 39935 ntrk0kbimka 42776 truniALT 43288 onfrALTlem3 43291 ee223 43381 paireqne 46166 fmtnofac2lem 46223 setrec1lem4 47689 |
Copyright terms: Public domain | W3C validator |