Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version |
Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 6876 oprabidw 7286 oprabid 7287 frxp 7938 smo11 8166 oaordex 8351 oaass 8354 omordi 8359 oeordsuc 8387 nnmordi 8424 nnmord 8425 nnaordex 8431 brecop 8557 findcard2OLD 8986 elfiun 9119 ordiso2 9204 ordtypelem7 9213 cantnf 9381 coftr 9960 domtriomlem 10129 prlem936 10734 zindd 12351 supxrun 12979 ccatopth2 14358 cau3lem 14994 climcau 15310 dvdsabseq 15950 divalglem8 16037 lcmf 16266 dirtr 18235 frgpnabllem1 19389 dprddisj2 19557 znrrg 20685 opnnei 22179 restntr 22241 lpcls 22423 comppfsc 22591 ufilmax 22966 ufileu 22978 flimfnfcls 23087 alexsubALTlem4 23109 qustgplem 23180 metrest 23586 caubl 24377 ulmcau 25459 ulmcn 25463 usgr2wlkneq 28025 erclwwlksym 28286 erclwwlktr 28287 erclwwlknsym 28335 erclwwlkntr 28336 sumdmdlem 30681 bnj1280 32900 fundmpss 33646 dfon2lem8 33672 nodenselem8 33821 ifscgr 34273 btwnconn1lem11 34326 btwnconn2 34331 finminlem 34434 opnrebl2 34437 fvineqsneq 35510 poimirlem21 35725 poimirlem26 35730 filbcmb 35825 seqpo 35832 mpobi123f 36247 mptbi12f 36251 ac6s6 36257 dia2dimlem12 39016 ntrk0kbimka 41538 truniALT 42050 onfrALTlem3 42053 ee223 42143 paireqne 44851 fmtnofac2lem 44908 setrec1lem4 46282 |
Copyright terms: Public domain | W3C validator |