| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpdd | Structured version Visualization version GIF version | ||
| Description: A nested modus ponens deduction. Double deduction associated with ax-mp 5. Deduction associated with mpd 15. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpdd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| mpdd.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpdd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | mpdd.2 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | a2d 29 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mpid 44 mpdi 45 syld 47 syl6c 70 mpteqb 6953 oprabidw 7384 oprabid 7385 frxp 8066 smo11 8294 oaordex 8483 oaass 8486 omordi 8491 oeordsuc 8519 nnmordi 8556 nnmord 8557 nnaordex 8563 brecop 8744 elfiun 9339 ordiso2 9426 ordtypelem7 9435 cantnf 9608 coftr 10186 domtriomlem 10355 prlem936 10960 zindd 12596 supxrun 13237 ccatopth2 14642 cau3lem 15281 climcau 15597 dvdsabseq 16243 divalglem8 16330 lcmf 16563 dirtr 18527 frgpnabllem1 19771 dprddisj2 19939 znrrg 21491 opnnei 23024 restntr 23086 lpcls 23268 comppfsc 23436 ufilmax 23811 ufileu 23823 flimfnfcls 23932 alexsubALTlem4 23954 qustgplem 24025 metrest 24429 caubl 25225 ulmcau 26321 ulmcn 26325 nodenselem8 27620 usgr2wlkneq 29720 erclwwlksym 29984 erclwwlktr 29985 erclwwlknsym 30033 erclwwlkntr 30034 sumdmdlem 32381 bnj1280 35006 antnestlaw2 35684 fundmpss 35759 dfon2lem8 35783 ifscgr 36037 btwnconn1lem11 36090 btwnconn2 36095 finminlem 36311 opnrebl2 36314 fvineqsneq 37405 poimirlem21 37640 poimirlem26 37645 filbcmb 37739 seqpo 37746 mpobi123f 38161 mptbi12f 38165 ac6s6 38171 dia2dimlem12 41074 aks6d1c1p2 42102 ntrk0kbimka 44032 truniALT 44535 onfrALTlem3 44538 ee223 44628 ormklocald 46875 paireqne 47515 fmtnofac2lem 47572 setrec1lem4 49695 |
| Copyright terms: Public domain | W3C validator |