![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.43b 55 rspc 3623 rspc2gv 3645 intss1 4987 fvopab3ig 7025 suppimacnv 8215 odi 8635 nndi 8679 preleqALT 9686 inf3lem2 9698 pr2neOLD 10074 zorn2lem7 10571 uzind2 12736 ssfzo12 13809 elfznelfzo 13822 injresinj 13838 suppssfz 14045 sqlecan 14258 fi1uzind 14556 cramerimplem2 22711 fiinopn 22928 uhgr0v0e 29273 0uhgrsubgr 29314 0uhgrrusgr 29614 ewlkprop 29639 umgrwwlks2on 29990 3cyclfrgrrn1 30317 3cyclfrgrrn 30318 vdgn1frgrv2 30328 dvrunz 37914 ee223 44605 afveu 47068 afv2eu 47153 lindslinindsimp2 48192 nn0sumshdiglemB 48354 |
Copyright terms: Public domain | W3C validator |