![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.43b 55 rspc 3599 rspc2gv 3620 intss1 4966 fvopab3ig 6993 suppimacnv 8161 odi 8581 nndi 8625 preleqALT 9614 inf3lem2 9626 pr2neOLD 10002 zorn2lem7 10499 uzind2 12659 ssfzo12 13729 elfznelfzo 13741 injresinj 13757 suppssfz 13963 sqlecan 14177 fi1uzind 14462 cramerimplem2 22406 fiinopn 22623 uhgr0v0e 28762 0uhgrsubgr 28803 0uhgrrusgr 29102 ewlkprop 29127 umgrwwlks2on 29478 3cyclfrgrrn1 29805 3cyclfrgrrn 29806 vdgn1frgrv2 29816 dvrunz 37125 ee223 43697 afveu 46159 afv2eu 46244 lindslinindsimp2 47231 nn0sumshdiglemB 47393 |
Copyright terms: Public domain | W3C validator |