![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.43b 55 rspc 3595 rspc2gv 3617 intss1 4966 fvopab3ig 6998 suppimacnv 8177 odi 8598 nndi 8642 preleqALT 9640 inf3lem2 9652 pr2neOLD 10028 zorn2lem7 10525 uzind2 12685 ssfzo12 13757 elfznelfzo 13769 injresinj 13785 suppssfz 13991 sqlecan 14204 fi1uzind 14490 cramerimplem2 22616 fiinopn 22833 uhgr0v0e 29107 0uhgrsubgr 29148 0uhgrrusgr 29448 ewlkprop 29473 umgrwwlks2on 29824 3cyclfrgrrn1 30151 3cyclfrgrrn 30152 vdgn1frgrv2 30162 dvrunz 37497 ee223 44138 afveu 46596 afv2eu 46681 lindslinindsimp2 47643 nn0sumshdiglemB 47805 |
Copyright terms: Public domain | W3C validator |