| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: pm2.43b 55 rspc 3562 rspc2gv 3584 intss1 4915 fvopab3ig 6934 suppimacnv 8113 odi 8503 nndi 8547 preleqALT 9517 inf3lem2 9529 zorn2lem7 10403 uzind2 12576 ssfzo12 13669 elfznelfzo 13683 injresinj 13701 suppssfz 13911 sqlecan 14126 fi1uzind 14424 cramerimplem2 22609 fiinopn 22826 uhgr0v0e 29227 0uhgrsubgr 29268 0uhgrrusgr 29568 ewlkprop 29593 usgrwwlks2on 29947 umgrwwlks2on 29948 3cyclfrgrrn1 30276 3cyclfrgrrn 30277 vdgn1frgrv2 30287 dvrunz 38004 ee223 44741 afveu 47267 afv2eu 47352 lindslinindsimp2 48578 nn0sumshdiglemB 48735 |
| Copyright terms: Public domain | W3C validator |