| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: pm2.43b 55 rspc 3563 rspc2gv 3585 intss1 4911 fvopab3ig 6920 suppimacnv 8099 odi 8489 nndi 8533 preleqALT 9502 inf3lem2 9514 zorn2lem7 10385 uzind2 12558 ssfzo12 13651 elfznelfzo 13665 injresinj 13683 suppssfz 13893 sqlecan 14108 fi1uzind 14406 cramerimplem2 22592 fiinopn 22809 uhgr0v0e 29209 0uhgrsubgr 29250 0uhgrrusgr 29550 ewlkprop 29575 umgrwwlks2on 29928 3cyclfrgrrn1 30255 3cyclfrgrrn 30256 vdgn1frgrv2 30266 dvrunz 37973 ee223 44646 afveu 47163 afv2eu 47248 lindslinindsimp2 48474 nn0sumshdiglemB 48631 |
| Copyright terms: Public domain | W3C validator |