| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: pm2.43b 55 rspc 3576 rspc2gv 3598 intss1 4927 fvopab3ig 6964 suppimacnv 8153 odi 8543 nndi 8587 preleqALT 9570 inf3lem2 9582 pr2neOLD 9958 zorn2lem7 10455 uzind2 12627 ssfzo12 13720 elfznelfzo 13733 injresinj 13749 suppssfz 13959 sqlecan 14174 fi1uzind 14472 cramerimplem2 22571 fiinopn 22788 uhgr0v0e 29165 0uhgrsubgr 29206 0uhgrrusgr 29506 ewlkprop 29531 umgrwwlks2on 29887 3cyclfrgrrn1 30214 3cyclfrgrrn 30215 vdgn1frgrv2 30225 dvrunz 37948 ee223 44624 afveu 47154 afv2eu 47239 lindslinindsimp2 48452 nn0sumshdiglemB 48609 |
| Copyright terms: Public domain | W3C validator |