| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: pm2.43b 55 rspc 3567 rspc2gv 3589 intss1 4916 fvopab3ig 6930 suppimacnv 8114 odi 8504 nndi 8548 preleqALT 9532 inf3lem2 9544 zorn2lem7 10415 uzind2 12587 ssfzo12 13680 elfznelfzo 13693 injresinj 13709 suppssfz 13919 sqlecan 14134 fi1uzind 14432 cramerimplem2 22587 fiinopn 22804 uhgr0v0e 29201 0uhgrsubgr 29242 0uhgrrusgr 29542 ewlkprop 29567 umgrwwlks2on 29920 3cyclfrgrrn1 30247 3cyclfrgrrn 30248 vdgn1frgrv2 30258 dvrunz 37933 ee223 44608 afveu 47138 afv2eu 47223 lindslinindsimp2 48436 nn0sumshdiglemB 48593 |
| Copyright terms: Public domain | W3C validator |