Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.43b 55 rspc 3539 rspc2gv 3561 intss1 4891 fvopab3ig 6853 suppimacnv 7961 odi 8372 nndi 8416 preleqALT 9305 inf3lem2 9317 pr2ne 9692 zorn2lem7 10189 uzind2 12343 ssfzo12 13408 elfznelfzo 13420 injresinj 13436 suppssfz 13642 sqlecan 13853 fi1uzind 14139 cramerimplem2 21741 fiinopn 21958 uhgr0v0e 27508 0uhgrsubgr 27549 0uhgrrusgr 27848 ewlkprop 27873 umgrwwlks2on 28223 3cyclfrgrrn1 28550 3cyclfrgrrn 28551 vdgn1frgrv2 28561 dvrunz 36039 ee223 42143 afveu 44532 afv2eu 44617 lindslinindsimp2 45692 nn0sumshdiglemB 45854 |
Copyright terms: Public domain | W3C validator |