![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.43b 55 rspc 3595 rspc2gv 3617 intss1 4961 fvopab3ig 6995 suppimacnv 8172 odi 8593 nndi 8637 preleqALT 9632 inf3lem2 9644 pr2neOLD 10020 zorn2lem7 10517 uzind2 12677 ssfzo12 13749 elfznelfzo 13761 injresinj 13777 suppssfz 13983 sqlecan 14196 fi1uzind 14482 cramerimplem2 22573 fiinopn 22790 uhgr0v0e 29038 0uhgrsubgr 29079 0uhgrrusgr 29379 ewlkprop 29404 umgrwwlks2on 29755 3cyclfrgrrn1 30082 3cyclfrgrrn 30083 vdgn1frgrv2 30093 dvrunz 37362 ee223 43996 afveu 46456 afv2eu 46541 lindslinindsimp2 47454 nn0sumshdiglemB 47616 |
Copyright terms: Public domain | W3C validator |