| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: pm2.43b 55 rspc 3589 rspc2gv 3611 intss1 4939 fvopab3ig 6982 suppimacnv 8173 odi 8591 nndi 8635 preleqALT 9631 inf3lem2 9643 pr2neOLD 10019 zorn2lem7 10516 uzind2 12686 ssfzo12 13775 elfznelfzo 13788 injresinj 13804 suppssfz 14012 sqlecan 14227 fi1uzind 14525 cramerimplem2 22622 fiinopn 22839 uhgr0v0e 29217 0uhgrsubgr 29258 0uhgrrusgr 29558 ewlkprop 29583 umgrwwlks2on 29939 3cyclfrgrrn1 30266 3cyclfrgrrn 30267 vdgn1frgrv2 30277 dvrunz 37978 ee223 44659 afveu 47182 afv2eu 47267 lindslinindsimp2 48439 nn0sumshdiglemB 48600 |
| Copyright terms: Public domain | W3C validator |