![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.43b 55 rspc 3610 rspc2gv 3632 intss1 4968 fvopab3ig 7012 suppimacnv 8198 odi 8616 nndi 8660 preleqALT 9655 inf3lem2 9667 pr2neOLD 10043 zorn2lem7 10540 uzind2 12709 ssfzo12 13795 elfznelfzo 13808 injresinj 13824 suppssfz 14032 sqlecan 14245 fi1uzind 14543 cramerimplem2 22706 fiinopn 22923 uhgr0v0e 29270 0uhgrsubgr 29311 0uhgrrusgr 29611 ewlkprop 29636 umgrwwlks2on 29987 3cyclfrgrrn1 30314 3cyclfrgrrn 30315 vdgn1frgrv2 30325 dvrunz 37941 ee223 44632 afveu 47103 afv2eu 47188 lindslinindsimp2 48309 nn0sumshdiglemB 48470 |
Copyright terms: Public domain | W3C validator |