MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.43a Structured version   Visualization version   GIF version

Theorem pm2.43a 54
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
pm2.43a.1 (𝜓 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
pm2.43a (𝜓 → (𝜑𝜒))

Proof of Theorem pm2.43a
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
2 pm2.43a.1 . 2 (𝜓 → (𝜑 → (𝜓𝜒)))
31, 2mpid 44 1 (𝜓 → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  pm2.43b  55  rspc  3579  rspc2gv  3601  intss1  4930  fvopab3ig  6967  suppimacnv  8156  odi  8546  nndi  8590  preleqALT  9577  inf3lem2  9589  pr2neOLD  9965  zorn2lem7  10462  uzind2  12634  ssfzo12  13727  elfznelfzo  13740  injresinj  13756  suppssfz  13966  sqlecan  14181  fi1uzind  14479  cramerimplem2  22578  fiinopn  22795  uhgr0v0e  29172  0uhgrsubgr  29213  0uhgrrusgr  29513  ewlkprop  29538  umgrwwlks2on  29894  3cyclfrgrrn1  30221  3cyclfrgrrn  30222  vdgn1frgrv2  30232  dvrunz  37955  ee223  44631  afveu  47158  afv2eu  47243  lindslinindsimp2  48456  nn0sumshdiglemB  48613
  Copyright terms: Public domain W3C validator