| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: pm2.43b 55 rspc 3579 rspc2gv 3601 intss1 4930 fvopab3ig 6967 suppimacnv 8156 odi 8546 nndi 8590 preleqALT 9577 inf3lem2 9589 pr2neOLD 9965 zorn2lem7 10462 uzind2 12634 ssfzo12 13727 elfznelfzo 13740 injresinj 13756 suppssfz 13966 sqlecan 14181 fi1uzind 14479 cramerimplem2 22578 fiinopn 22795 uhgr0v0e 29172 0uhgrsubgr 29213 0uhgrrusgr 29513 ewlkprop 29538 umgrwwlks2on 29894 3cyclfrgrrn1 30221 3cyclfrgrrn 30222 vdgn1frgrv2 30232 dvrunz 37955 ee223 44631 afveu 47158 afv2eu 47243 lindslinindsimp2 48456 nn0sumshdiglemB 48613 |
| Copyright terms: Public domain | W3C validator |