![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.43b 55 rspc 3600 rspc2gv 3620 intss1 4966 fvopab3ig 6991 suppimacnv 8155 odi 8575 nndi 8619 preleqALT 9608 inf3lem2 9620 pr2neOLD 9996 zorn2lem7 10493 uzind2 12651 ssfzo12 13721 elfznelfzo 13733 injresinj 13749 suppssfz 13955 sqlecan 14169 fi1uzind 14454 cramerimplem2 22177 fiinopn 22394 uhgr0v0e 28484 0uhgrsubgr 28525 0uhgrrusgr 28824 ewlkprop 28849 umgrwwlks2on 29200 3cyclfrgrrn1 29527 3cyclfrgrrn 29528 vdgn1frgrv2 29538 dvrunz 36810 ee223 43380 afveu 45847 afv2eu 45932 lindslinindsimp2 47097 nn0sumshdiglemB 47259 |
Copyright terms: Public domain | W3C validator |