Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.43a | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpid 44 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.43b 55 rspc 3549 rspc2gv 3569 intss1 4894 fvopab3ig 6871 suppimacnv 7990 odi 8410 nndi 8454 preleqALT 9375 inf3lem2 9387 pr2ne 9761 zorn2lem7 10258 uzind2 12413 ssfzo12 13480 elfznelfzo 13492 injresinj 13508 suppssfz 13714 sqlecan 13925 fi1uzind 14211 cramerimplem2 21833 fiinopn 22050 uhgr0v0e 27605 0uhgrsubgr 27646 0uhgrrusgr 27945 ewlkprop 27970 umgrwwlks2on 28322 3cyclfrgrrn1 28649 3cyclfrgrrn 28650 vdgn1frgrv2 28660 dvrunz 36112 ee223 42254 afveu 44645 afv2eu 44730 lindslinindsimp2 45804 nn0sumshdiglemB 45966 |
Copyright terms: Public domain | W3C validator |