Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e2bir Structured version   Visualization version   GIF version

Theorem e2bir 42253
Description: Right biconditional form of e2 42251. syl6ibr 251 is e2bir 42253 without virtual deductions. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e2bir.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e2bir.2 (𝜃𝜒)
Assertion
Ref Expression
e2bir (   𝜑   ,   𝜓   ▶   𝜃   )

Proof of Theorem e2bir
StepHypRef Expression
1 e2bir.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 e2bir.2 . . 3 (𝜃𝜒)
32biimpri 227 . 2 (𝜒𝜃)
41, 3e2 42251 1 (   𝜑   ,   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wb 205  (   wvd2 42197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-vd2 42198
This theorem is referenced by:  trsspwALT  42438  pwtrVD  42444  eqsbc2VD  42460  tpid3gVD  42462  onfrALTlem1VD  42510
  Copyright terms: Public domain W3C validator