Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trintALT Structured version   Visualization version   GIF version

Theorem trintALT 45037
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. trintALT 45037 is an alternate proof of trint 5219. trintALT 45037 is trintALTVD 45036 without virtual deductions and was automatically derived from trintALTVD 45036 using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE_WITH *" command. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintALT (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintALT
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
21a1i 11 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦))
3 iidn3 44658 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑞𝐴)))
4 id 22 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ∀𝑥𝐴 Tr 𝑥)
5 rspsbc 3826 . . . . . . . 8 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
63, 4, 5ee31 44908 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴[𝑞 / 𝑥]Tr 𝑥)))
7 trsbc 44697 . . . . . . . 8 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
87biimpd 229 . . . . . . 7 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
93, 6, 8ee33 44678 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴 → Tr 𝑞)))
10 simpr 484 . . . . . . . . 9 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
1110a1i 11 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴))
12 elintg 4907 . . . . . . . . 9 (𝑦 𝐴 → (𝑦 𝐴 ↔ ∀𝑞𝐴 𝑦𝑞))
1312ibi 267 . . . . . . . 8 (𝑦 𝐴 → ∀𝑞𝐴 𝑦𝑞)
1411, 13syl6 35 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞𝐴 𝑦𝑞))
15 rsp 3221 . . . . . . 7 (∀𝑞𝐴 𝑦𝑞 → (𝑞𝐴𝑦𝑞))
1614, 15syl6 35 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑦𝑞)))
17 trel 5210 . . . . . . 7 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
1817expd 415 . . . . . 6 (Tr 𝑞 → (𝑧𝑦 → (𝑦𝑞𝑧𝑞)))
199, 2, 16, 18ee323 44665 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑧𝑞)))
2019ralrimdv 3131 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞𝐴 𝑧𝑞))
21 elintg 4907 . . . . 5 (𝑧𝑦 → (𝑧 𝐴 ↔ ∀𝑞𝐴 𝑧𝑞))
2221biimprd 248 . . . 4 (𝑧𝑦 → (∀𝑞𝐴 𝑧𝑞𝑧 𝐴))
232, 20, 22syl6c 70 . . 3 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2423alrimivv 1929 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
25 dftr2 5204 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2624, 25sylibr 234 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wcel 2113  wral 3048  [wsbc 3737   cint 4899  Tr wtr 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-sbc 3738  df-ss 3915  df-uni 4861  df-int 4900  df-tr 5203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator