Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trintALT Structured version   Visualization version   GIF version

Theorem trintALT 44877
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. trintALT 44877 is an alternate proof of trint 5235. trintALT 44877 is trintALTVD 44876 without virtual deductions and was automatically derived from trintALTVD 44876 using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE_WITH *" command. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintALT (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintALT
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
21a1i 11 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦))
3 iidn3 44498 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑞𝐴)))
4 id 22 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ∀𝑥𝐴 Tr 𝑥)
5 rspsbc 3845 . . . . . . . 8 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
63, 4, 5ee31 44748 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴[𝑞 / 𝑥]Tr 𝑥)))
7 trsbc 44537 . . . . . . . 8 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
87biimpd 229 . . . . . . 7 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
93, 6, 8ee33 44518 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴 → Tr 𝑞)))
10 simpr 484 . . . . . . . . 9 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
1110a1i 11 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴))
12 elintg 4921 . . . . . . . . 9 (𝑦 𝐴 → (𝑦 𝐴 ↔ ∀𝑞𝐴 𝑦𝑞))
1312ibi 267 . . . . . . . 8 (𝑦 𝐴 → ∀𝑞𝐴 𝑦𝑞)
1411, 13syl6 35 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞𝐴 𝑦𝑞))
15 rsp 3226 . . . . . . 7 (∀𝑞𝐴 𝑦𝑞 → (𝑞𝐴𝑦𝑞))
1614, 15syl6 35 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑦𝑞)))
17 trel 5226 . . . . . . 7 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
1817expd 415 . . . . . 6 (Tr 𝑞 → (𝑧𝑦 → (𝑦𝑞𝑧𝑞)))
199, 2, 16, 18ee323 44505 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑧𝑞)))
2019ralrimdv 3132 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞𝐴 𝑧𝑞))
21 elintg 4921 . . . . 5 (𝑧𝑦 → (𝑧 𝐴 ↔ ∀𝑞𝐴 𝑧𝑞))
2221biimprd 248 . . . 4 (𝑧𝑦 → (∀𝑞𝐴 𝑧𝑞𝑧 𝐴))
232, 20, 22syl6c 70 . . 3 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2423alrimivv 1928 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
25 dftr2 5219 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2624, 25sylibr 234 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  wral 3045  [wsbc 3756   cint 4913  Tr wtr 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-sbc 3757  df-ss 3934  df-uni 4875  df-int 4914  df-tr 5218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator