Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trintALT Structured version   Visualization version   GIF version

Theorem trintALT 42501
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. trintALT 42501 is an alternate proof of trint 5207. trintALT 42501 is trintALTVD 42500 without virtual deductions and was automatically derived from trintALTVD 42500 using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE_WITH *" command. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintALT (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintALT
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
21a1i 11 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦))
3 iidn3 42121 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑞𝐴)))
4 id 22 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ∀𝑥𝐴 Tr 𝑥)
5 rspsbc 3812 . . . . . . . 8 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
63, 4, 5ee31 42372 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴[𝑞 / 𝑥]Tr 𝑥)))
7 trsbc 42160 . . . . . . . 8 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
87biimpd 228 . . . . . . 7 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
93, 6, 8ee33 42141 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴 → Tr 𝑞)))
10 simpr 485 . . . . . . . . 9 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
1110a1i 11 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴))
12 elintg 4887 . . . . . . . . 9 (𝑦 𝐴 → (𝑦 𝐴 ↔ ∀𝑞𝐴 𝑦𝑞))
1312ibi 266 . . . . . . . 8 (𝑦 𝐴 → ∀𝑞𝐴 𝑦𝑞)
1411, 13syl6 35 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞𝐴 𝑦𝑞))
15 rsp 3131 . . . . . . 7 (∀𝑞𝐴 𝑦𝑞 → (𝑞𝐴𝑦𝑞))
1614, 15syl6 35 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑦𝑞)))
17 trel 5198 . . . . . . 7 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
1817expd 416 . . . . . 6 (Tr 𝑞 → (𝑧𝑦 → (𝑦𝑞𝑧𝑞)))
199, 2, 16, 18ee323 42128 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑧𝑞)))
2019ralrimdv 3105 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞𝐴 𝑧𝑞))
21 elintg 4887 . . . . 5 (𝑧𝑦 → (𝑧 𝐴 ↔ ∀𝑞𝐴 𝑧𝑞))
2221biimprd 247 . . . 4 (𝑧𝑦 → (∀𝑞𝐴 𝑧𝑞𝑧 𝐴))
232, 20, 22syl6c 70 . . 3 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2423alrimivv 1931 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
25 dftr2 5193 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2624, 25sylibr 233 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  wral 3064  [wsbc 3716   cint 4879  Tr wtr 5191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-v 3434  df-sbc 3717  df-in 3894  df-ss 3904  df-uni 4840  df-int 4880  df-tr 5192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator