Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trintALT Structured version   Visualization version   GIF version

Theorem trintALT 44852
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. trintALT 44852 is an alternate proof of trint 5301. trintALT 44852 is trintALTVD 44851 without virtual deductions and was automatically derived from trintALTVD 44851 using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE_WITH *" command. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintALT (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintALT
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
21a1i 11 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦))
3 iidn3 44472 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑞𝐴)))
4 id 22 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ∀𝑥𝐴 Tr 𝑥)
5 rspsbc 3901 . . . . . . . 8 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
63, 4, 5ee31 44723 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴[𝑞 / 𝑥]Tr 𝑥)))
7 trsbc 44511 . . . . . . . 8 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
87biimpd 229 . . . . . . 7 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
93, 6, 8ee33 44492 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴 → Tr 𝑞)))
10 simpr 484 . . . . . . . . 9 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
1110a1i 11 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴))
12 elintg 4978 . . . . . . . . 9 (𝑦 𝐴 → (𝑦 𝐴 ↔ ∀𝑞𝐴 𝑦𝑞))
1312ibi 267 . . . . . . . 8 (𝑦 𝐴 → ∀𝑞𝐴 𝑦𝑞)
1411, 13syl6 35 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞𝐴 𝑦𝑞))
15 rsp 3253 . . . . . . 7 (∀𝑞𝐴 𝑦𝑞 → (𝑞𝐴𝑦𝑞))
1614, 15syl6 35 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑦𝑞)))
17 trel 5292 . . . . . . 7 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
1817expd 415 . . . . . 6 (Tr 𝑞 → (𝑧𝑦 → (𝑦𝑞𝑧𝑞)))
199, 2, 16, 18ee323 44479 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑧𝑞)))
2019ralrimdv 3158 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞𝐴 𝑧𝑞))
21 elintg 4978 . . . . 5 (𝑧𝑦 → (𝑧 𝐴 ↔ ∀𝑞𝐴 𝑧𝑞))
2221biimprd 248 . . . 4 (𝑧𝑦 → (∀𝑞𝐴 𝑧𝑞𝑧 𝐴))
232, 20, 22syl6c 70 . . 3 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2423alrimivv 1927 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
25 dftr2 5285 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2624, 25sylibr 234 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wcel 2108  wral 3067  [wsbc 3804   cint 4970  Tr wtr 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-sbc 3805  df-ss 3993  df-uni 4932  df-int 4971  df-tr 5284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator