Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trintALT Structured version   Visualization version   GIF version

Theorem trintALT 42390
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. trintALT 42390 is an alternate proof of trint 5203. trintALT 42390 is trintALTVD 42389 without virtual deductions and was automatically derived from trintALTVD 42389 using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE_WITH *" command. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintALT (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintALT
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
21a1i 11 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦))
3 iidn3 42010 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑞𝐴)))
4 id 22 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ∀𝑥𝐴 Tr 𝑥)
5 rspsbc 3808 . . . . . . . 8 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
63, 4, 5ee31 42261 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴[𝑞 / 𝑥]Tr 𝑥)))
7 trsbc 42049 . . . . . . . 8 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
87biimpd 228 . . . . . . 7 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
93, 6, 8ee33 42030 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴 → Tr 𝑞)))
10 simpr 484 . . . . . . . . 9 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
1110a1i 11 . . . . . . . 8 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴))
12 elintg 4884 . . . . . . . . 9 (𝑦 𝐴 → (𝑦 𝐴 ↔ ∀𝑞𝐴 𝑦𝑞))
1312ibi 266 . . . . . . . 8 (𝑦 𝐴 → ∀𝑞𝐴 𝑦𝑞)
1411, 13syl6 35 . . . . . . 7 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞𝐴 𝑦𝑞))
15 rsp 3129 . . . . . . 7 (∀𝑞𝐴 𝑦𝑞 → (𝑞𝐴𝑦𝑞))
1614, 15syl6 35 . . . . . 6 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑦𝑞)))
17 trel 5194 . . . . . . 7 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
1817expd 415 . . . . . 6 (Tr 𝑞 → (𝑧𝑦 → (𝑦𝑞𝑧𝑞)))
199, 2, 16, 18ee323 42017 . . . . 5 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → (𝑞𝐴𝑧𝑞)))
2019ralrimdv 3111 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → ∀𝑞𝐴 𝑧𝑞))
21 elintg 4884 . . . . 5 (𝑧𝑦 → (𝑧 𝐴 ↔ ∀𝑞𝐴 𝑧𝑞))
2221biimprd 247 . . . 4 (𝑧𝑦 → (∀𝑞𝐴 𝑧𝑞𝑧 𝐴))
232, 20, 22syl6c 70 . . 3 (∀𝑥𝐴 Tr 𝑥 → ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2423alrimivv 1932 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
25 dftr2 5189 . 2 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
2624, 25sylibr 233 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wcel 2108  wral 3063  [wsbc 3711   cint 4876  Tr wtr 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-v 3424  df-sbc 3712  df-in 3890  df-ss 3900  df-uni 4837  df-int 4877  df-tr 5188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator