Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . 5
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ 𝑦) |
2 | 1 | a1i 11 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ 𝑦)) |
3 | | iidn3 42010 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → (𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐴))) |
4 | | id 22 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ∀𝑥 ∈ 𝐴 Tr 𝑥) |
5 | | rspsbc 3808 |
. . . . . . . 8
⊢ (𝑞 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 Tr 𝑥 → [𝑞 / 𝑥]Tr 𝑥)) |
6 | 3, 4, 5 | ee31 42261 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → (𝑞 ∈ 𝐴 → [𝑞 / 𝑥]Tr 𝑥))) |
7 | | trsbc 42049 |
. . . . . . . 8
⊢ (𝑞 ∈ 𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞)) |
8 | 7 | biimpd 228 |
. . . . . . 7
⊢ (𝑞 ∈ 𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞)) |
9 | 3, 6, 8 | ee33 42030 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → (𝑞 ∈ 𝐴 → Tr 𝑞))) |
10 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑦 ∈ ∩ 𝐴) |
11 | 10 | a1i 11 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑦 ∈ ∩ 𝐴)) |
12 | | elintg 4884 |
. . . . . . . . 9
⊢ (𝑦 ∈ ∩ 𝐴
→ (𝑦 ∈ ∩ 𝐴
↔ ∀𝑞 ∈
𝐴 𝑦 ∈ 𝑞)) |
13 | 12 | ibi 266 |
. . . . . . . 8
⊢ (𝑦 ∈ ∩ 𝐴
→ ∀𝑞 ∈
𝐴 𝑦 ∈ 𝑞) |
14 | 11, 13 | syl6 35 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → ∀𝑞 ∈ 𝐴 𝑦 ∈ 𝑞)) |
15 | | rsp 3129 |
. . . . . . 7
⊢
(∀𝑞 ∈
𝐴 𝑦 ∈ 𝑞 → (𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞)) |
16 | 14, 15 | syl6 35 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → (𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞))) |
17 | | trel 5194 |
. . . . . . 7
⊢ (Tr 𝑞 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞) → 𝑧 ∈ 𝑞)) |
18 | 17 | expd 415 |
. . . . . 6
⊢ (Tr 𝑞 → (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑞 → 𝑧 ∈ 𝑞))) |
19 | 9, 2, 16, 18 | ee323 42017 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → (𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞))) |
20 | 19 | ralrimdv 3111 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → ∀𝑞 ∈ 𝐴 𝑧 ∈ 𝑞)) |
21 | | elintg 4884 |
. . . . 5
⊢ (𝑧 ∈ 𝑦 → (𝑧 ∈ ∩ 𝐴 ↔ ∀𝑞 ∈ 𝐴 𝑧 ∈ 𝑞)) |
22 | 21 | biimprd 247 |
. . . 4
⊢ (𝑧 ∈ 𝑦 → (∀𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 → 𝑧 ∈ ∩ 𝐴)) |
23 | 2, 20, 22 | syl6c 70 |
. . 3
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴)) |
24 | 23 | alrimivv 1932 |
. 2
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴)) |
25 | | dftr2 5189 |
. 2
⊢ (Tr ∩ 𝐴
↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴)) |
26 | 24, 25 | sylibr 233 |
1
⊢
(∀𝑥 ∈
𝐴 Tr 𝑥 → Tr ∩ 𝐴) |