| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6c | Structured version Visualization version GIF version | ||
| Description: Inference combining syl6 35 with contraction. (Contributed by Alan Sare, 2-May-2011.) |
| Ref | Expression |
|---|---|
| syl6c.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6c.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| syl6c.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl6c | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6c.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 2 | syl6c.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | syl6c.3 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
| 5 | 1, 4 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl6ci 71 syldd 72 impbidd 210 pm5.21ndd 379 jcad 512 a2and 845 zorn2lem6 10398 sqreulem 15273 ontopbas 36479 ontgval 36482 ordtoplem 36486 ordcmp 36498 fvineqsneu 37462 jaodd 42307 ee33 44619 sb5ALT 44623 tratrb 44634 onfrALTlem2 44644 onfrALT 44647 ax6e2ndeq 44657 ee22an 44771 sspwtrALT 44919 sspwtrALT2 44920 trintALT 44978 |
| Copyright terms: Public domain | W3C validator |