| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6c | Structured version Visualization version GIF version | ||
| Description: Inference combining syl6 35 with contraction. (Contributed by Alan Sare, 2-May-2011.) |
| Ref | Expression |
|---|---|
| syl6c.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6c.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| syl6c.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl6c | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6c.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 2 | syl6c.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | syl6c.3 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
| 5 | 1, 4 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl6ci 71 syldd 72 impbidd 210 pm5.21ndd 379 jcad 512 a2and 845 zorn2lem6 10454 sqreulem 15326 ontopbas 36416 ontgval 36419 ordtoplem 36423 ordcmp 36435 fvineqsneu 37399 jaodd 42196 ee33 44511 sb5ALT 44515 tratrb 44526 onfrALTlem2 44536 onfrALT 44539 ax6e2ndeq 44549 ee22an 44663 sspwtrALT 44811 sspwtrALT2 44812 trintALT 44870 |
| Copyright terms: Public domain | W3C validator |