| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6c | Structured version Visualization version GIF version | ||
| Description: Inference combining syl6 35 with contraction. (Contributed by Alan Sare, 2-May-2011.) |
| Ref | Expression |
|---|---|
| syl6c.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6c.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| syl6c.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl6c | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6c.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 2 | syl6c.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | syl6c.3 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
| 5 | 1, 4 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl6ci 71 syldd 72 impbidd 210 pm5.21ndd 379 jcad 512 a2and 845 zorn2lem6 10384 sqreulem 15259 ontopbas 36441 ontgval 36444 ordtoplem 36448 ordcmp 36460 fvineqsneu 37424 jaodd 42220 ee33 44533 sb5ALT 44537 tratrb 44548 onfrALTlem2 44558 onfrALT 44561 ax6e2ndeq 44571 ee22an 44685 sspwtrALT 44833 sspwtrALT2 44834 trintALT 44892 |
| Copyright terms: Public domain | W3C validator |