Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl6c | Structured version Visualization version GIF version |
Description: Inference combining syl6 35 with contraction. (Contributed by Alan Sare, 2-May-2011.) |
Ref | Expression |
---|---|
syl6c.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6c.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
syl6c.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
syl6c | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6c.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
2 | syl6c.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | syl6c.3 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
5 | 1, 4 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl6ci 71 syldd 72 impbidd 209 pm5.21ndd 380 jcad 512 a2and 841 zorn2lem6 10188 sqreulem 14999 ontopbas 34544 ontgval 34547 ordtoplem 34551 ordcmp 34563 fvineqsneu 35509 jaodd 40102 ee33 42030 sb5ALT 42034 tratrb 42045 onfrALTlem2 42055 onfrALT 42058 ax6e2ndeq 42068 ee22an 42182 sspwtrALT 42331 sspwtrALT2 42332 trintALT 42390 |
Copyright terms: Public domain | W3C validator |