| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6c | Structured version Visualization version GIF version | ||
| Description: Inference combining syl6 35 with contraction. (Contributed by Alan Sare, 2-May-2011.) |
| Ref | Expression |
|---|---|
| syl6c.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6c.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| syl6c.3 | ⊢ (𝜒 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl6c | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6c.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 2 | syl6c.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | syl6c.3 | . . 3 ⊢ (𝜒 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
| 5 | 1, 4 | mpdd 43 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl6ci 71 syldd 72 impbidd 210 pm5.21ndd 379 jcad 512 a2and 845 zorn2lem6 10414 sqreulem 15285 ontopbas 36401 ontgval 36404 ordtoplem 36408 ordcmp 36420 fvineqsneu 37384 jaodd 42181 ee33 44495 sb5ALT 44499 tratrb 44510 onfrALTlem2 44520 onfrALT 44523 ax6e2ndeq 44533 ee22an 44647 sspwtrALT 44795 sspwtrALT2 44796 trintALT 44854 |
| Copyright terms: Public domain | W3C validator |