MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl6c Structured version   Visualization version   GIF version

Theorem syl6c 70
Description: Inference combining syl6 35 with contraction. (Contributed by Alan Sare, 2-May-2011.)
Hypotheses
Ref Expression
syl6c.1 (𝜑 → (𝜓𝜒))
syl6c.2 (𝜑 → (𝜓𝜃))
syl6c.3 (𝜒 → (𝜃𝜏))
Assertion
Ref Expression
syl6c (𝜑 → (𝜓𝜏))

Proof of Theorem syl6c
StepHypRef Expression
1 syl6c.2 . 2 (𝜑 → (𝜓𝜃))
2 syl6c.1 . . 3 (𝜑 → (𝜓𝜒))
3 syl6c.3 . . 3 (𝜒 → (𝜃𝜏))
42, 3syl6 35 . 2 (𝜑 → (𝜓 → (𝜃𝜏)))
51, 4mpdd 43 1 (𝜑 → (𝜓𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syl6ci  71  syldd  72  impbidd  210  pm5.21ndd  379  jcad  512  a2and  845  zorn2lem6  10384  sqreulem  15259  ontopbas  36441  ontgval  36444  ordtoplem  36448  ordcmp  36460  fvineqsneu  37424  jaodd  42220  ee33  44533  sb5ALT  44537  tratrb  44548  onfrALTlem2  44558  onfrALT  44561  ax6e2ndeq  44571  ee22an  44685  sspwtrALT  44833  sspwtrALT2  44834  trintALT  44892
  Copyright terms: Public domain W3C validator