Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp4an | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
mp4an.1 | ⊢ 𝜑 |
mp4an.2 | ⊢ 𝜓 |
mp4an.3 | ⊢ 𝜒 |
mp4an.4 | ⊢ 𝜃 |
mp4an.5 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
mp4an | ⊢ 𝜏 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp4an.1 | . . 3 ⊢ 𝜑 | |
2 | mp4an.2 | . . 3 ⊢ 𝜓 | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝜑 ∧ 𝜓) |
4 | mp4an.3 | . . 3 ⊢ 𝜒 | |
5 | mp4an.4 | . . 3 ⊢ 𝜃 | |
6 | 4, 5 | pm3.2i 470 | . 2 ⊢ (𝜒 ∧ 𝜃) |
7 | mp4an.5 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
8 | 3, 6, 7 | mp2an 688 | 1 ⊢ 𝜏 |
Copyright terms: Public domain | W3C validator |