![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp4an | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
mp4an.1 | ⊢ 𝜑 |
mp4an.2 | ⊢ 𝜓 |
mp4an.3 | ⊢ 𝜒 |
mp4an.4 | ⊢ 𝜃 |
mp4an.5 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
mp4an | ⊢ 𝜏 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp4an.1 | . . 3 ⊢ 𝜑 | |
2 | mp4an.2 | . . 3 ⊢ 𝜓 | |
3 | 1, 2 | pm3.2i 463 | . 2 ⊢ (𝜑 ∧ 𝜓) |
4 | mp4an.3 | . . 3 ⊢ 𝜒 | |
5 | mp4an.4 | . . 3 ⊢ 𝜃 | |
6 | 4, 5 | pm3.2i 463 | . 2 ⊢ (𝜒 ∧ 𝜃) |
7 | mp4an.5 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
8 | 3, 6, 7 | mp2an 679 | 1 ⊢ 𝜏 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 |
This theorem is referenced by: noinfep 8919 1lt2nq 10195 m1p1sr 10314 m1m1sr 10315 axi2m1 10381 mul4i 10639 add4i 10666 add42i 10667 addsub4i 10785 muladdi 10894 lt2addi 11005 le2addi 11006 mulne0i 11086 divne0i 11191 divmuldivi 11203 divadddivi 11205 divdivdivi 11206 subreci 11273 8th4div3 11670 xrsup0 12535 fldiv4p1lem1div2 13023 sqrt2gt1lt2 14498 3dvds2dec 15545 flodddiv4 15627 nprmi 15892 mod2xnegi 16266 catcfuccl 17230 catcxpccl 17318 iccpnfhmeo 23255 xrhmeo 23256 cnheiborlem 23264 pcoval1 23323 pcoval2 23326 pcoass 23334 lhop1lem 24316 efcvx 24743 dvrelog 24924 dvlog 24938 dvlog2 24940 dvsqrt 25027 dvcnsqrt 25029 cxpcn3 25033 ang180lem1 25091 dvatan 25217 log2cnv 25227 log2tlbnd 25228 log2ub 25232 harmonicbnd3 25290 ppiub 25485 bposlem8 25572 bposlem9 25573 lgsdir2lem1 25606 m1lgs 25669 2lgslem4 25687 2sqlem11 25710 2sqreultlem 25728 2sqreunnltlem 25731 chebbnd1 25753 usgrexmplef 26747 siilem1 28408 hvadd4i 28617 his35i 28648 bdophsi 29657 bdopcoi 29659 mdcompli 29990 dmdcompli 29991 xrge00 30405 sqsscirc1 30795 raddcn 30816 xrge0iifcnv 30820 xrge0iifiso 30822 xrge0iifhom 30824 esumcvgsum 30991 dstfrvclim1 31381 signsply0 31467 cvmlift2lem6 32140 cvmlift2lem12 32146 poimirlem9 34342 poimirlem15 34348 sqdeccom12 38607 lhe4.4ex1a 40077 dvcosre 41627 wallispi 41787 fourierdlem57 41880 fourierdlem58 41881 fourierdlem112 41935 fouriersw 41948 2exp340mod341 43267 8exp8mod9 43270 nfermltl8rev 43276 tgblthelfgott 43349 zlmodzxzequa 43919 zlmodzxzequap 43922 |
Copyright terms: Public domain | W3C validator |