Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eel11111 | Structured version Visualization version GIF version |
Description: Five-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl113anc 1380 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
eel11111.1 | ⊢ (𝜑 → 𝜓) |
eel11111.2 | ⊢ (𝜑 → 𝜒) |
eel11111.3 | ⊢ (𝜑 → 𝜃) |
eel11111.4 | ⊢ (𝜑 → 𝜏) |
eel11111.5 | ⊢ (𝜑 → 𝜂) |
eel11111.6 | ⊢ (((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
eel11111 | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eel11111.4 | . 2 ⊢ (𝜑 → 𝜏) | |
2 | eel11111.5 | . 2 ⊢ (𝜑 → 𝜂) | |
3 | eel11111.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
4 | eel11111.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
5 | eel11111.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
6 | eel11111.6 | . . . . 5 ⊢ (((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
7 | 6 | exp41 434 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → (𝜃 → (𝜏 → (𝜂 → 𝜁)))) |
8 | 7 | ex 412 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜂 → 𝜁))))) |
9 | 3, 4, 5, 8 | syl3c 66 | . 2 ⊢ (𝜑 → (𝜏 → (𝜂 → 𝜁))) |
10 | 1, 2, 9 | mp2d 49 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |