|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eelTTT | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| eelTTT.1 | ⊢ (⊤ → 𝜑) | 
| eelTTT.2 | ⊢ (⊤ → 𝜓) | 
| eelTTT.3 | ⊢ (⊤ → 𝜒) | 
| eelTTT.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| eelTTT | ⊢ 𝜃 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eelTTT.3 | . . 3 ⊢ (⊤ → 𝜒) | |
| 2 | truan 1550 | . . . 4 ⊢ ((⊤ ∧ 𝜒) ↔ 𝜒) | |
| 3 | eelTTT.2 | . . . . 5 ⊢ (⊤ → 𝜓) | |
| 4 | 3anass 1094 | . . . . . . 7 ⊢ ((⊤ ∧ 𝜓 ∧ 𝜒) ↔ (⊤ ∧ (𝜓 ∧ 𝜒))) | |
| 5 | truan 1550 | . . . . . . 7 ⊢ ((⊤ ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ 𝜒)) | |
| 6 | 4, 5 | bitri 275 | . . . . . 6 ⊢ ((⊤ ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) | 
| 7 | eelTTT.1 | . . . . . . 7 ⊢ (⊤ → 𝜑) | |
| 8 | eelTTT.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 9 | 7, 8 | syl3an1 1163 | . . . . . 6 ⊢ ((⊤ ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| 10 | 6, 9 | sylbir 235 | . . . . 5 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | 
| 11 | 3, 10 | sylan 580 | . . . 4 ⊢ ((⊤ ∧ 𝜒) → 𝜃) | 
| 12 | 2, 11 | sylbir 235 | . . 3 ⊢ (𝜒 → 𝜃) | 
| 13 | 1, 12 | syl 17 | . 2 ⊢ (⊤ → 𝜃) | 
| 14 | 13 | mptru 1546 | 1 ⊢ 𝜃 | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ⊤wtru 1540 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |