Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eelTTT | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eelTTT.1 | ⊢ (⊤ → 𝜑) |
eelTTT.2 | ⊢ (⊤ → 𝜓) |
eelTTT.3 | ⊢ (⊤ → 𝜒) |
eelTTT.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
eelTTT | ⊢ 𝜃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eelTTT.3 | . . 3 ⊢ (⊤ → 𝜒) | |
2 | truan 1549 | . . . 4 ⊢ ((⊤ ∧ 𝜒) ↔ 𝜒) | |
3 | eelTTT.2 | . . . . 5 ⊢ (⊤ → 𝜓) | |
4 | 3anass 1092 | . . . . . . 7 ⊢ ((⊤ ∧ 𝜓 ∧ 𝜒) ↔ (⊤ ∧ (𝜓 ∧ 𝜒))) | |
5 | truan 1549 | . . . . . . 7 ⊢ ((⊤ ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ 𝜒)) | |
6 | 4, 5 | bitri 278 | . . . . . 6 ⊢ ((⊤ ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
7 | eelTTT.1 | . . . . . . 7 ⊢ (⊤ → 𝜑) | |
8 | eelTTT.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
9 | 7, 8 | syl3an1 1160 | . . . . . 6 ⊢ ((⊤ ∧ 𝜓 ∧ 𝜒) → 𝜃) |
10 | 6, 9 | sylbir 238 | . . . . 5 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
11 | 3, 10 | sylan 583 | . . . 4 ⊢ ((⊤ ∧ 𝜒) → 𝜃) |
12 | 2, 11 | sylbir 238 | . . 3 ⊢ (𝜒 → 𝜃) |
13 | 1, 12 | syl 17 | . 2 ⊢ (⊤ → 𝜃) |
14 | 13 | mptru 1545 | 1 ⊢ 𝜃 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 ⊤wtru 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 df-tru 1541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |