| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eel2122old | Structured version Visualization version GIF version | ||
| Description: el2122old 44739 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eel2122old.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| eel2122old.2 | ⊢ (𝜓 → 𝜃) |
| eel2122old.3 | ⊢ (𝜓 → 𝜏) |
| eel2122old.4 | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| eel2122old | ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eel2122old.3 | . . . . . 6 ⊢ (𝜓 → 𝜏) | |
| 2 | eel2122old.2 | . . . . . . 7 ⊢ (𝜓 → 𝜃) | |
| 3 | eel2122old.1 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 4 | eel2122old.4 | . . . . . . . . 9 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
| 5 | 4 | 3exp 1120 | . . . . . . . 8 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
| 6 | 3, 5 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → (𝜃 → (𝜏 → 𝜂))) |
| 7 | 2, 6 | syl5 34 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 → (𝜏 → 𝜂))) |
| 8 | 1, 7 | syl7 74 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 → (𝜓 → 𝜂))) |
| 9 | 8 | ex 412 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜓 → (𝜓 → 𝜂)))) |
| 10 | 9 | pm2.43d 53 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜓 → 𝜂))) |
| 11 | 10 | pm2.43d 53 | . 2 ⊢ (𝜑 → (𝜓 → 𝜂)) |
| 12 | 11 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: el2122old 44739 suctrALTcf 44942 |
| Copyright terms: Public domain | W3C validator |