Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALTcfVD Structured version   Visualization version   GIF version

Theorem suctrALTcfVD 39907
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 39543) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 39906 is suctrALTcfVD 39907 without virtual deductions and was derived automatically from suctrALTcfVD 39907. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   Tr 𝐴   ▶   Tr 𝐴   )
2:: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
3:2: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑧𝑦   )
4:: (   ................................... ....... 𝑦𝐴   ▶   𝑦𝐴   )
5:1,3,4: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧𝐴   )
6:: 𝐴 ⊆ suc 𝐴
7:5,6: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
8:7: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
9:: (   ................................... ...... 𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
10:3,9: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧𝐴   )
11:10,6: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
12:11: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
13:2: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
14:13: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
15:8,12,14: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   𝑧 ∈ suc 𝐴   )
16:15: (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
17:16: (   Tr 𝐴   ▶   𝑧𝑦((𝑧 𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
18:17: (   Tr 𝐴   ▶   Tr suc 𝐴   )
qed:18: (Tr 𝐴 → Tr suc 𝐴)
Assertion
Ref Expression
suctrALTcfVD (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctrALTcfVD
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 6016 . . . . . . . 8 𝐴 ⊆ suc 𝐴
2 idn1 39548 . . . . . . . . 9 (   Tr 𝐴   ▶   Tr 𝐴   )
3 idn1 39548 . . . . . . . . . 10 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
4 simpl 475 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
53, 4el1 39611 . . . . . . . . 9 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑧𝑦   )
6 idn1 39548 . . . . . . . . 9 (   𝑦𝐴   ▶   𝑦𝐴   )
7 trel 4950 . . . . . . . . . 10 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
873impib 1145 . . . . . . . . 9 ((Tr 𝐴𝑧𝑦𝑦𝐴) → 𝑧𝐴)
92, 5, 6, 8el123 39748 . . . . . . . 8 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   )   ▶   𝑧𝐴   )
10 ssel2 3791 . . . . . . . 8 ((𝐴 ⊆ suc 𝐴𝑧𝐴) → 𝑧 ∈ suc 𝐴)
111, 9, 10el0321old 39700 . . . . . . 7 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
1211int3 39595 . . . . . 6 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   )   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
13 idn1 39548 . . . . . . . . 9 (   𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
14 eleq2 2865 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
1514biimpac 471 . . . . . . . . 9 ((𝑧𝑦𝑦 = 𝐴) → 𝑧𝐴)
165, 13, 15el12 39710 . . . . . . . 8 (   (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   )   ▶   𝑧𝐴   )
171, 16, 10el021old 39684 . . . . . . 7 (   (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
1817int2 39589 . . . . . 6 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
19 simpr 478 . . . . . . . 8 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
203, 19el1 39611 . . . . . . 7 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
21 elsuci 6005 . . . . . . 7 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
2220, 21el1 39611 . . . . . 6 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
23 jao 984 . . . . . . 7 ((𝑦𝐴𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
24233imp 1138 . . . . . 6 (((𝑦𝐴𝑧 ∈ suc 𝐴) ∧ (𝑦 = 𝐴𝑧 ∈ suc 𝐴) ∧ (𝑦𝐴𝑦 = 𝐴)) → 𝑧 ∈ suc 𝐴)
2512, 18, 22, 24el2122old 39702 . . . . 5 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   )   ▶   𝑧 ∈ suc 𝐴   )
2625int2 39589 . . . 4 (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
2726gen12 39601 . . 3 (   Tr 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
28 dftr2 4945 . . . 4 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2928biimpri 220 . . 3 (∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴)
3027, 29el1 39611 . 2 (   Tr 𝐴   ▶   Tr suc 𝐴   )
3130in1 39545 1 (Tr 𝐴 → Tr suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wo 874  wal 1651   = wceq 1653  wcel 2157  wss 3767  Tr wtr 4943  suc csuc 5941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2775
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-v 3385  df-un 3772  df-in 3774  df-ss 3781  df-sn 4367  df-uni 4627  df-tr 4944  df-suc 5945  df-vd1 39544  df-vhc2 39555  df-vhc3 39563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator