Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALTcfVD Structured version   Visualization version   GIF version

Theorem suctrALTcfVD 45039
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 44686) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 45038 is suctrALTcfVD 45039 without virtual deductions and was derived automatically from suctrALTcfVD 45039. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   Tr 𝐴   ▶   Tr 𝐴   )
2:: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
3:2: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑧𝑦   )
4:: (   ................................... ....... 𝑦𝐴   ▶   𝑦𝐴   )
5:1,3,4: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧𝐴   )
6:: 𝐴 ⊆ suc 𝐴
7:5,6: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
8:7: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
9:: (   ................................... ...... 𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
10:3,9: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧𝐴   )
11:10,6: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
12:11: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
13:2: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
14:13: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
15:8,12,14: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   𝑧 ∈ suc 𝐴   )
16:15: (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
17:16: (   Tr 𝐴   ▶   𝑧𝑦((𝑧 𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
18:17: (   Tr 𝐴   ▶   Tr suc 𝐴   )
qed:18: (Tr 𝐴 → Tr suc 𝐴)
Assertion
Ref Expression
suctrALTcfVD (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctrALTcfVD
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 6393 . . . . . . . 8 𝐴 ⊆ suc 𝐴
2 idn1 44691 . . . . . . . . 9 (   Tr 𝐴   ▶   Tr 𝐴   )
3 idn1 44691 . . . . . . . . . 10 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
4 simpl 482 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
53, 4el1 44745 . . . . . . . . 9 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑧𝑦   )
6 idn1 44691 . . . . . . . . 9 (   𝑦𝐴   ▶   𝑦𝐴   )
7 trel 5208 . . . . . . . . . 10 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
873impib 1116 . . . . . . . . 9 ((Tr 𝐴𝑧𝑦𝑦𝐴) → 𝑧𝐴)
92, 5, 6, 8el123 44880 . . . . . . . 8 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   )   ▶   𝑧𝐴   )
10 ssel2 3925 . . . . . . . 8 ((𝐴 ⊆ suc 𝐴𝑧𝐴) → 𝑧 ∈ suc 𝐴)
111, 9, 10el0321old 44833 . . . . . . 7 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
1211int3 44729 . . . . . 6 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   )   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
13 idn1 44691 . . . . . . . . 9 (   𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
14 eleq2 2822 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
1514biimpac 478 . . . . . . . . 9 ((𝑧𝑦𝑦 = 𝐴) → 𝑧𝐴)
165, 13, 15el12 44842 . . . . . . . 8 (   (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   )   ▶   𝑧𝐴   )
171, 16, 10el021old 44818 . . . . . . 7 (   (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
1817int2 44723 . . . . . 6 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
19 simpr 484 . . . . . . . 8 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
203, 19el1 44745 . . . . . . 7 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
21 elsuci 6380 . . . . . . 7 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
2220, 21el1 44745 . . . . . 6 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
23 jao 962 . . . . . . 7 ((𝑦𝐴𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
24233imp 1110 . . . . . 6 (((𝑦𝐴𝑧 ∈ suc 𝐴) ∧ (𝑦 = 𝐴𝑧 ∈ suc 𝐴) ∧ (𝑦𝐴𝑦 = 𝐴)) → 𝑧 ∈ suc 𝐴)
2512, 18, 22, 24el2122old 44835 . . . . 5 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   )   ▶   𝑧 ∈ suc 𝐴   )
2625int2 44723 . . . 4 (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
2726gen12 44735 . . 3 (   Tr 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
28 dftr2 5202 . . . 4 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2928biimpri 228 . . 3 (∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴)
3027, 29el1 44745 . 2 (   Tr 𝐴   ▶   Tr suc 𝐴   )
3130in1 44688 1 (Tr 𝐴 → Tr suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wal 1539   = wceq 1541  wcel 2113  wss 3898  Tr wtr 5200  suc csuc 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-ss 3915  df-sn 4576  df-uni 4859  df-tr 5201  df-suc 6317  df-vd1 44687  df-vhc2 44698  df-vhc3 44706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator