| Step | Hyp | Ref
| Expression |
| 1 | | sssucid 6434 |
. . . . . . . 8
⊢ 𝐴 ⊆ suc 𝐴 |
| 2 | | idn1 44599 |
. . . . . . . . 9
⊢ ( Tr 𝐴 ▶ Tr 𝐴 ) |
| 3 | | idn1 44599 |
. . . . . . . . . 10
⊢ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ) |
| 4 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ 𝑦) |
| 5 | 3, 4 | el1 44653 |
. . . . . . . . 9
⊢ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ▶ 𝑧 ∈ 𝑦 ) |
| 6 | | idn1 44599 |
. . . . . . . . 9
⊢ ( 𝑦 ∈ 𝐴 ▶ 𝑦 ∈ 𝐴 ) |
| 7 | | trel 5238 |
. . . . . . . . . 10
⊢ (Tr 𝐴 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) |
| 8 | 7 | 3impib 1116 |
. . . . . . . . 9
⊢ ((Tr
𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
| 9 | 2, 5, 6, 8 | el123 44788 |
. . . . . . . 8
⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) , 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ 𝐴 ) |
| 10 | | ssel2 3953 |
. . . . . . . 8
⊢ ((𝐴 ⊆ suc 𝐴 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ suc 𝐴) |
| 11 | 1, 9, 10 | el0321old 44741 |
. . . . . . 7
⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) , 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 ) |
| 12 | 11 | int3 44637 |
. . . . . 6
⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ) ▶ (𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴) ) |
| 13 | | idn1 44599 |
. . . . . . . . 9
⊢ ( 𝑦 = 𝐴 ▶ 𝑦 = 𝐴 ) |
| 14 | | eleq2 2823 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴)) |
| 15 | 14 | biimpac 478 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 = 𝐴) → 𝑧 ∈ 𝐴) |
| 16 | 5, 13, 15 | el12 44750 |
. . . . . . . 8
⊢ ( ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) , 𝑦 = 𝐴 ) ▶ 𝑧 ∈ 𝐴 ) |
| 17 | 1, 16, 10 | el021old 44726 |
. . . . . . 7
⊢ ( ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) , 𝑦 = 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 ) |
| 18 | 17 | int2 44631 |
. . . . . 6
⊢ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ▶ (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴) ) |
| 19 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴) |
| 20 | 3, 19 | el1 44653 |
. . . . . . 7
⊢ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ▶ 𝑦 ∈ suc 𝐴 ) |
| 21 | | elsuci 6421 |
. . . . . . 7
⊢ (𝑦 ∈ suc 𝐴 → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
| 22 | 20, 21 | el1 44653 |
. . . . . 6
⊢ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ▶ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) ) |
| 23 | | jao 962 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴) → ((𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴))) |
| 24 | 23 | 3imp 1110 |
. . . . . 6
⊢ (((𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴) ∧ (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴) ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) → 𝑧 ∈ suc 𝐴) |
| 25 | 12, 18, 22, 24 | el2122old 44743 |
. . . . 5
⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) ) ▶ 𝑧 ∈ suc 𝐴 ) |
| 26 | 25 | int2 44631 |
. . . 4
⊢ ( Tr 𝐴 ▶ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) ) |
| 27 | 26 | gen12 44643 |
. . 3
⊢ ( Tr 𝐴 ▶ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) ) |
| 28 | | dftr2 5231 |
. . . 4
⊢ (Tr suc
𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)) |
| 29 | 28 | biimpri 228 |
. . 3
⊢
(∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴) |
| 30 | 27, 29 | el1 44653 |
. 2
⊢ ( Tr 𝐴 ▶ Tr suc
𝐴 ) |
| 31 | 30 | in1 44596 |
1
⊢ (Tr 𝐴 → Tr suc 𝐴) |