Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALTcfVD Structured version   Visualization version   GIF version

Theorem suctrALTcfVD 44954
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 44601) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 44953 is suctrALTcfVD 44954 without virtual deductions and was derived automatically from suctrALTcfVD 44954. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   Tr 𝐴   ▶   Tr 𝐴   )
2:: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
3:2: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑧𝑦   )
4:: (   ................................... ....... 𝑦𝐴   ▶   𝑦𝐴   )
5:1,3,4: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧𝐴   )
6:: 𝐴 ⊆ suc 𝐴
7:5,6: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
8:7: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
9:: (   ................................... ...... 𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
10:3,9: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧𝐴   )
11:10,6: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
12:11: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
13:2: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
14:13: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
15:8,12,14: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   𝑧 ∈ suc 𝐴   )
16:15: (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
17:16: (   Tr 𝐴   ▶   𝑧𝑦((𝑧 𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
18:17: (   Tr 𝐴   ▶   Tr suc 𝐴   )
qed:18: (Tr 𝐴 → Tr suc 𝐴)
Assertion
Ref Expression
suctrALTcfVD (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctrALTcfVD
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 6388 . . . . . . . 8 𝐴 ⊆ suc 𝐴
2 idn1 44606 . . . . . . . . 9 (   Tr 𝐴   ▶   Tr 𝐴   )
3 idn1 44606 . . . . . . . . . 10 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
4 simpl 482 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
53, 4el1 44660 . . . . . . . . 9 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑧𝑦   )
6 idn1 44606 . . . . . . . . 9 (   𝑦𝐴   ▶   𝑦𝐴   )
7 trel 5206 . . . . . . . . . 10 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
873impib 1116 . . . . . . . . 9 ((Tr 𝐴𝑧𝑦𝑦𝐴) → 𝑧𝐴)
92, 5, 6, 8el123 44795 . . . . . . . 8 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   )   ▶   𝑧𝐴   )
10 ssel2 3929 . . . . . . . 8 ((𝐴 ⊆ suc 𝐴𝑧𝐴) → 𝑧 ∈ suc 𝐴)
111, 9, 10el0321old 44748 . . . . . . 7 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
1211int3 44644 . . . . . 6 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   )   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
13 idn1 44606 . . . . . . . . 9 (   𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
14 eleq2 2820 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
1514biimpac 478 . . . . . . . . 9 ((𝑧𝑦𝑦 = 𝐴) → 𝑧𝐴)
165, 13, 15el12 44757 . . . . . . . 8 (   (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   )   ▶   𝑧𝐴   )
171, 16, 10el021old 44733 . . . . . . 7 (   (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ,   𝑦 = 𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
1817int2 44638 . . . . . 6 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
19 simpr 484 . . . . . . . 8 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
203, 19el1 44660 . . . . . . 7 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
21 elsuci 6375 . . . . . . 7 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
2220, 21el1 44660 . . . . . 6 (   (𝑧𝑦𝑦 ∈ suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
23 jao 962 . . . . . . 7 ((𝑦𝐴𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
24233imp 1110 . . . . . 6 (((𝑦𝐴𝑧 ∈ suc 𝐴) ∧ (𝑦 = 𝐴𝑧 ∈ suc 𝐴) ∧ (𝑦𝐴𝑦 = 𝐴)) → 𝑧 ∈ suc 𝐴)
2512, 18, 22, 24el2122old 44750 . . . . 5 (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)   )   ▶   𝑧 ∈ suc 𝐴   )
2625int2 44638 . . . 4 (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
2726gen12 44650 . . 3 (   Tr 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
28 dftr2 5200 . . . 4 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2928biimpri 228 . . 3 (∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴)
3027, 29el1 44660 . 2 (   Tr 𝐴   ▶   Tr suc 𝐴   )
3130in1 44603 1 (Tr 𝐴 → Tr suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wal 1539   = wceq 1541  wcel 2111  wss 3902  Tr wtr 5198  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3907  df-ss 3919  df-sn 4577  df-uni 4860  df-tr 5199  df-suc 6312  df-vd1 44602  df-vhc2 44613  df-vhc3 44621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator