Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > el123 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
el123.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
el123.2 | ⊢ ( 𝜒 ▶ 𝜃 ) |
el123.3 | ⊢ ( 𝜏 ▶ 𝜂 ) |
el123.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
el123 | ⊢ ( ( 𝜑 , 𝜒 , 𝜏 ) ▶ 𝜁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el123.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | in1 42191 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | el123.2 | . . . 4 ⊢ ( 𝜒 ▶ 𝜃 ) | |
4 | 3 | in1 42191 | . . 3 ⊢ (𝜒 → 𝜃) |
5 | el123.3 | . . . 4 ⊢ ( 𝜏 ▶ 𝜂 ) | |
6 | 5 | in1 42191 | . . 3 ⊢ (𝜏 → 𝜂) |
7 | el123.4 | . . 3 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
8 | 2, 4, 6, 7 | syl3an 1159 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
9 | 8 | dfvd3anir 42216 | 1 ⊢ ( ( 𝜑 , 𝜒 , 𝜏 ) ▶ 𝜁 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ( wvd1 42189 ( wvhc3 42208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-vd1 42190 df-vhc3 42209 |
This theorem is referenced by: suctrALTcfVD 42543 |
Copyright terms: Public domain | W3C validator |