|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > el123 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| el123.1 | ⊢ ( 𝜑 ▶ 𝜓 ) | 
| el123.2 | ⊢ ( 𝜒 ▶ 𝜃 ) | 
| el123.3 | ⊢ ( 𝜏 ▶ 𝜂 ) | 
| el123.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | 
| Ref | Expression | 
|---|---|
| el123 | ⊢ ( ( 𝜑 , 𝜒 , 𝜏 ) ▶ 𝜁 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | el123.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | in1 44591 | . . 3 ⊢ (𝜑 → 𝜓) | 
| 3 | el123.2 | . . . 4 ⊢ ( 𝜒 ▶ 𝜃 ) | |
| 4 | 3 | in1 44591 | . . 3 ⊢ (𝜒 → 𝜃) | 
| 5 | el123.3 | . . . 4 ⊢ ( 𝜏 ▶ 𝜂 ) | |
| 6 | 5 | in1 44591 | . . 3 ⊢ (𝜏 → 𝜂) | 
| 7 | el123.4 | . . 3 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 8 | 2, 4, 6, 7 | syl3an 1161 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | 
| 9 | 8 | dfvd3anir 44616 | 1 ⊢ ( ( 𝜑 , 𝜒 , 𝜏 ) ▶ 𝜁 ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1087 ( wvd1 44589 ( wvhc3 44608 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-vd1 44590 df-vhc3 44609 | 
| This theorem is referenced by: suctrALTcfVD 44943 | 
| Copyright terms: Public domain | W3C validator |