| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version | ||
| Description: Inference form of df-vd1 44611. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| in1 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | df-vd1 44611 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44611 |
| This theorem is referenced by: vd12 44641 vd13 44642 gen11nv 44658 gen12 44659 exinst11 44667 e1a 44668 el1 44669 e223 44676 e111 44715 e1111 44716 el2122old 44759 el12 44766 el123 44804 un0.1 44819 trsspwALT 44858 sspwtr 44861 pwtrVD 44864 pwtrrVD 44865 snssiALTVD 44867 snsslVD 44869 snelpwrVD 44871 unipwrVD 44872 sstrALT2VD 44874 suctrALT2VD 44876 elex2VD 44878 elex22VD 44879 eqsbc2VD 44880 zfregs2VD 44881 tpid3gVD 44882 en3lplem1VD 44883 en3lplem2VD 44884 en3lpVD 44885 3ornot23VD 44887 orbi1rVD 44888 3orbi123VD 44890 sbc3orgVD 44891 19.21a3con13vVD 44892 exbirVD 44893 exbiriVD 44894 rspsbc2VD 44895 3impexpVD 44896 3impexpbicomVD 44897 sbcoreleleqVD 44899 tratrbVD 44901 al2imVD 44902 syl5impVD 44903 ssralv2VD 44906 ordelordALTVD 44907 equncomVD 44908 imbi12VD 44913 imbi13VD 44914 sbcim2gVD 44915 sbcbiVD 44916 trsbcVD 44917 truniALTVD 44918 trintALTVD 44920 undif3VD 44922 sbcssgVD 44923 csbingVD 44924 simplbi2comtVD 44928 onfrALTVD 44931 csbeq2gVD 44932 csbsngVD 44933 csbxpgVD 44934 csbresgVD 44935 csbrngVD 44936 csbima12gALTVD 44937 csbunigVD 44938 csbfv12gALTVD 44939 con5VD 44940 relopabVD 44941 19.41rgVD 44942 2pm13.193VD 44943 hbimpgVD 44944 hbalgVD 44945 hbexgVD 44946 ax6e2eqVD 44947 ax6e2ndVD 44948 ax6e2ndeqVD 44949 2sb5ndVD 44950 2uasbanhVD 44951 e2ebindVD 44952 sb5ALTVD 44953 vk15.4jVD 44954 notnotrALTVD 44955 con3ALTVD 44956 sspwimpVD 44959 sspwimpcfVD 44961 suctrALTcfVD 44963 |
| Copyright terms: Public domain | W3C validator |