Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version |
Description: Inference form of df-vd1 42190. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
Ref | Expression |
---|---|
in1 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | df-vd1 42190 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42190 |
This theorem is referenced by: vd12 42220 vd13 42221 gen11nv 42237 gen12 42238 exinst11 42246 e1a 42247 el1 42248 e223 42255 e111 42294 e1111 42295 el2122old 42339 el12 42346 el123 42384 un0.1 42399 trsspwALT 42438 sspwtr 42441 pwtrVD 42444 pwtrrVD 42445 snssiALTVD 42447 snsslVD 42449 snelpwrVD 42451 unipwrVD 42452 sstrALT2VD 42454 suctrALT2VD 42456 elex2VD 42458 elex22VD 42459 eqsbc2VD 42460 zfregs2VD 42461 tpid3gVD 42462 en3lplem1VD 42463 en3lplem2VD 42464 en3lpVD 42465 3ornot23VD 42467 orbi1rVD 42468 3orbi123VD 42470 sbc3orgVD 42471 19.21a3con13vVD 42472 exbirVD 42473 exbiriVD 42474 rspsbc2VD 42475 3impexpVD 42476 3impexpbicomVD 42477 sbcoreleleqVD 42479 tratrbVD 42481 al2imVD 42482 syl5impVD 42483 ssralv2VD 42486 ordelordALTVD 42487 equncomVD 42488 imbi12VD 42493 imbi13VD 42494 sbcim2gVD 42495 sbcbiVD 42496 trsbcVD 42497 truniALTVD 42498 trintALTVD 42500 undif3VD 42502 sbcssgVD 42503 csbingVD 42504 simplbi2comtVD 42508 onfrALTVD 42511 csbeq2gVD 42512 csbsngVD 42513 csbxpgVD 42514 csbresgVD 42515 csbrngVD 42516 csbima12gALTVD 42517 csbunigVD 42518 csbfv12gALTVD 42519 con5VD 42520 relopabVD 42521 19.41rgVD 42522 2pm13.193VD 42523 hbimpgVD 42524 hbalgVD 42525 hbexgVD 42526 ax6e2eqVD 42527 ax6e2ndVD 42528 ax6e2ndeqVD 42529 2sb5ndVD 42530 2uasbanhVD 42531 e2ebindVD 42532 sb5ALTVD 42533 vk15.4jVD 42534 notnotrALTVD 42535 con3ALTVD 42536 sspwimpVD 42539 sspwimpcfVD 42541 suctrALTcfVD 42543 |
Copyright terms: Public domain | W3C validator |