| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version | ||
| Description: Inference form of df-vd1 44562. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| in1 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | df-vd1 44562 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44562 |
| This theorem is referenced by: vd12 44592 vd13 44593 gen11nv 44609 gen12 44610 exinst11 44618 e1a 44619 el1 44620 e223 44627 e111 44666 e1111 44667 el2122old 44710 el12 44717 el123 44755 un0.1 44770 trsspwALT 44809 sspwtr 44812 pwtrVD 44815 pwtrrVD 44816 snssiALTVD 44818 snsslVD 44820 snelpwrVD 44822 unipwrVD 44823 sstrALT2VD 44825 suctrALT2VD 44827 elex2VD 44829 elex22VD 44830 eqsbc2VD 44831 zfregs2VD 44832 tpid3gVD 44833 en3lplem1VD 44834 en3lplem2VD 44835 en3lpVD 44836 3ornot23VD 44838 orbi1rVD 44839 3orbi123VD 44841 sbc3orgVD 44842 19.21a3con13vVD 44843 exbirVD 44844 exbiriVD 44845 rspsbc2VD 44846 3impexpVD 44847 3impexpbicomVD 44848 sbcoreleleqVD 44850 tratrbVD 44852 al2imVD 44853 syl5impVD 44854 ssralv2VD 44857 ordelordALTVD 44858 equncomVD 44859 imbi12VD 44864 imbi13VD 44865 sbcim2gVD 44866 sbcbiVD 44867 trsbcVD 44868 truniALTVD 44869 trintALTVD 44871 undif3VD 44873 sbcssgVD 44874 csbingVD 44875 simplbi2comtVD 44879 onfrALTVD 44882 csbeq2gVD 44883 csbsngVD 44884 csbxpgVD 44885 csbresgVD 44886 csbrngVD 44887 csbima12gALTVD 44888 csbunigVD 44889 csbfv12gALTVD 44890 con5VD 44891 relopabVD 44892 19.41rgVD 44893 2pm13.193VD 44894 hbimpgVD 44895 hbalgVD 44896 hbexgVD 44897 ax6e2eqVD 44898 ax6e2ndVD 44899 ax6e2ndeqVD 44900 2sb5ndVD 44901 2uasbanhVD 44902 e2ebindVD 44903 sb5ALTVD 44904 vk15.4jVD 44905 notnotrALTVD 44906 con3ALTVD 44907 sspwimpVD 44910 sspwimpcfVD 44912 suctrALTcfVD 44914 |
| Copyright terms: Public domain | W3C validator |