| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version | ||
| Description: Inference form of df-vd1 44544. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| in1 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | df-vd1 44544 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44544 |
| This theorem is referenced by: vd12 44574 vd13 44575 gen11nv 44591 gen12 44592 exinst11 44600 e1a 44601 el1 44602 e223 44609 e111 44648 e1111 44649 el2122old 44692 el12 44699 el123 44737 un0.1 44752 trsspwALT 44791 sspwtr 44794 pwtrVD 44797 pwtrrVD 44798 snssiALTVD 44800 snsslVD 44802 snelpwrVD 44804 unipwrVD 44805 sstrALT2VD 44807 suctrALT2VD 44809 elex2VD 44811 elex22VD 44812 eqsbc2VD 44813 zfregs2VD 44814 tpid3gVD 44815 en3lplem1VD 44816 en3lplem2VD 44817 en3lpVD 44818 3ornot23VD 44820 orbi1rVD 44821 3orbi123VD 44823 sbc3orgVD 44824 19.21a3con13vVD 44825 exbirVD 44826 exbiriVD 44827 rspsbc2VD 44828 3impexpVD 44829 3impexpbicomVD 44830 sbcoreleleqVD 44832 tratrbVD 44834 al2imVD 44835 syl5impVD 44836 ssralv2VD 44839 ordelordALTVD 44840 equncomVD 44841 imbi12VD 44846 imbi13VD 44847 sbcim2gVD 44848 sbcbiVD 44849 trsbcVD 44850 truniALTVD 44851 trintALTVD 44853 undif3VD 44855 sbcssgVD 44856 csbingVD 44857 simplbi2comtVD 44861 onfrALTVD 44864 csbeq2gVD 44865 csbsngVD 44866 csbxpgVD 44867 csbresgVD 44868 csbrngVD 44869 csbima12gALTVD 44870 csbunigVD 44871 csbfv12gALTVD 44872 con5VD 44873 relopabVD 44874 19.41rgVD 44875 2pm13.193VD 44876 hbimpgVD 44877 hbalgVD 44878 hbexgVD 44879 ax6e2eqVD 44880 ax6e2ndVD 44881 ax6e2ndeqVD 44882 2sb5ndVD 44883 2uasbanhVD 44884 e2ebindVD 44885 sb5ALTVD 44886 vk15.4jVD 44887 notnotrALTVD 44888 con3ALTVD 44889 sspwimpVD 44892 sspwimpcfVD 44894 suctrALTcfVD 44896 |
| Copyright terms: Public domain | W3C validator |