| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version | ||
| Description: Inference form of df-vd1 44533. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| in1 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | df-vd1 44533 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44533 |
| This theorem is referenced by: vd12 44563 vd13 44564 gen11nv 44580 gen12 44581 exinst11 44589 e1a 44590 el1 44591 e223 44598 e111 44637 e1111 44638 el2122old 44681 el12 44688 el123 44726 un0.1 44741 trsspwALT 44780 sspwtr 44783 pwtrVD 44786 pwtrrVD 44787 snssiALTVD 44789 snsslVD 44791 snelpwrVD 44793 unipwrVD 44794 sstrALT2VD 44796 suctrALT2VD 44798 elex2VD 44800 elex22VD 44801 eqsbc2VD 44802 zfregs2VD 44803 tpid3gVD 44804 en3lplem1VD 44805 en3lplem2VD 44806 en3lpVD 44807 3ornot23VD 44809 orbi1rVD 44810 3orbi123VD 44812 sbc3orgVD 44813 19.21a3con13vVD 44814 exbirVD 44815 exbiriVD 44816 rspsbc2VD 44817 3impexpVD 44818 3impexpbicomVD 44819 sbcoreleleqVD 44821 tratrbVD 44823 al2imVD 44824 syl5impVD 44825 ssralv2VD 44828 ordelordALTVD 44829 equncomVD 44830 imbi12VD 44835 imbi13VD 44836 sbcim2gVD 44837 sbcbiVD 44838 trsbcVD 44839 truniALTVD 44840 trintALTVD 44842 undif3VD 44844 sbcssgVD 44845 csbingVD 44846 simplbi2comtVD 44850 onfrALTVD 44853 csbeq2gVD 44854 csbsngVD 44855 csbxpgVD 44856 csbresgVD 44857 csbrngVD 44858 csbima12gALTVD 44859 csbunigVD 44860 csbfv12gALTVD 44861 con5VD 44862 relopabVD 44863 19.41rgVD 44864 2pm13.193VD 44865 hbimpgVD 44866 hbalgVD 44867 hbexgVD 44868 ax6e2eqVD 44869 ax6e2ndVD 44870 ax6e2ndeqVD 44871 2sb5ndVD 44872 2uasbanhVD 44873 e2ebindVD 44874 sb5ALTVD 44875 vk15.4jVD 44876 notnotrALTVD 44877 con3ALTVD 44878 sspwimpVD 44881 sspwimpcfVD 44883 suctrALTcfVD 44885 |
| Copyright terms: Public domain | W3C validator |