![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version |
Description: Inference form of df-vd1 43845. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
Ref | Expression |
---|---|
in1 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | df-vd1 43845 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 43845 |
This theorem is referenced by: vd12 43875 vd13 43876 gen11nv 43892 gen12 43893 exinst11 43901 e1a 43902 el1 43903 e223 43910 e111 43949 e1111 43950 el2122old 43994 el12 44001 el123 44039 un0.1 44054 trsspwALT 44093 sspwtr 44096 pwtrVD 44099 pwtrrVD 44100 snssiALTVD 44102 snsslVD 44104 snelpwrVD 44106 unipwrVD 44107 sstrALT2VD 44109 suctrALT2VD 44111 elex2VD 44113 elex22VD 44114 eqsbc2VD 44115 zfregs2VD 44116 tpid3gVD 44117 en3lplem1VD 44118 en3lplem2VD 44119 en3lpVD 44120 3ornot23VD 44122 orbi1rVD 44123 3orbi123VD 44125 sbc3orgVD 44126 19.21a3con13vVD 44127 exbirVD 44128 exbiriVD 44129 rspsbc2VD 44130 3impexpVD 44131 3impexpbicomVD 44132 sbcoreleleqVD 44134 tratrbVD 44136 al2imVD 44137 syl5impVD 44138 ssralv2VD 44141 ordelordALTVD 44142 equncomVD 44143 imbi12VD 44148 imbi13VD 44149 sbcim2gVD 44150 sbcbiVD 44151 trsbcVD 44152 truniALTVD 44153 trintALTVD 44155 undif3VD 44157 sbcssgVD 44158 csbingVD 44159 simplbi2comtVD 44163 onfrALTVD 44166 csbeq2gVD 44167 csbsngVD 44168 csbxpgVD 44169 csbresgVD 44170 csbrngVD 44171 csbima12gALTVD 44172 csbunigVD 44173 csbfv12gALTVD 44174 con5VD 44175 relopabVD 44176 19.41rgVD 44177 2pm13.193VD 44178 hbimpgVD 44179 hbalgVD 44180 hbexgVD 44181 ax6e2eqVD 44182 ax6e2ndVD 44183 ax6e2ndeqVD 44184 2sb5ndVD 44185 2uasbanhVD 44186 e2ebindVD 44187 sb5ALTVD 44188 vk15.4jVD 44189 notnotrALTVD 44190 con3ALTVD 44191 sspwimpVD 44194 sspwimpcfVD 44196 suctrALTcfVD 44198 |
Copyright terms: Public domain | W3C validator |