| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version | ||
| Description: Inference form of df-vd1 44547. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| in1 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | df-vd1 44547 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44547 |
| This theorem is referenced by: vd12 44577 vd13 44578 gen11nv 44594 gen12 44595 exinst11 44603 e1a 44604 el1 44605 e223 44612 e111 44651 e1111 44652 el2122old 44696 el12 44703 el123 44741 un0.1 44756 trsspwALT 44795 sspwtr 44798 pwtrVD 44801 pwtrrVD 44802 snssiALTVD 44804 snsslVD 44806 snelpwrVD 44808 unipwrVD 44809 sstrALT2VD 44811 suctrALT2VD 44813 elex2VD 44815 elex22VD 44816 eqsbc2VD 44817 zfregs2VD 44818 tpid3gVD 44819 en3lplem1VD 44820 en3lplem2VD 44821 en3lpVD 44822 3ornot23VD 44824 orbi1rVD 44825 3orbi123VD 44827 sbc3orgVD 44828 19.21a3con13vVD 44829 exbirVD 44830 exbiriVD 44831 rspsbc2VD 44832 3impexpVD 44833 3impexpbicomVD 44834 sbcoreleleqVD 44836 tratrbVD 44838 al2imVD 44839 syl5impVD 44840 ssralv2VD 44843 ordelordALTVD 44844 equncomVD 44845 imbi12VD 44850 imbi13VD 44851 sbcim2gVD 44852 sbcbiVD 44853 trsbcVD 44854 truniALTVD 44855 trintALTVD 44857 undif3VD 44859 sbcssgVD 44860 csbingVD 44861 simplbi2comtVD 44865 onfrALTVD 44868 csbeq2gVD 44869 csbsngVD 44870 csbxpgVD 44871 csbresgVD 44872 csbrngVD 44873 csbima12gALTVD 44874 csbunigVD 44875 csbfv12gALTVD 44876 con5VD 44877 relopabVD 44878 19.41rgVD 44879 2pm13.193VD 44880 hbimpgVD 44881 hbalgVD 44882 hbexgVD 44883 ax6e2eqVD 44884 ax6e2ndVD 44885 ax6e2ndeqVD 44886 2sb5ndVD 44887 2uasbanhVD 44888 e2ebindVD 44889 sb5ALTVD 44890 vk15.4jVD 44891 notnotrALTVD 44892 con3ALTVD 44893 sspwimpVD 44896 sspwimpcfVD 44898 suctrALTcfVD 44900 |
| Copyright terms: Public domain | W3C validator |