![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version |
Description: Inference form of df-vd1 43316. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
Ref | Expression |
---|---|
in1 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | df-vd1 43316 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 43316 |
This theorem is referenced by: vd12 43346 vd13 43347 gen11nv 43363 gen12 43364 exinst11 43372 e1a 43373 el1 43374 e223 43381 e111 43420 e1111 43421 el2122old 43465 el12 43472 el123 43510 un0.1 43525 trsspwALT 43564 sspwtr 43567 pwtrVD 43570 pwtrrVD 43571 snssiALTVD 43573 snsslVD 43575 snelpwrVD 43577 unipwrVD 43578 sstrALT2VD 43580 suctrALT2VD 43582 elex2VD 43584 elex22VD 43585 eqsbc2VD 43586 zfregs2VD 43587 tpid3gVD 43588 en3lplem1VD 43589 en3lplem2VD 43590 en3lpVD 43591 3ornot23VD 43593 orbi1rVD 43594 3orbi123VD 43596 sbc3orgVD 43597 19.21a3con13vVD 43598 exbirVD 43599 exbiriVD 43600 rspsbc2VD 43601 3impexpVD 43602 3impexpbicomVD 43603 sbcoreleleqVD 43605 tratrbVD 43607 al2imVD 43608 syl5impVD 43609 ssralv2VD 43612 ordelordALTVD 43613 equncomVD 43614 imbi12VD 43619 imbi13VD 43620 sbcim2gVD 43621 sbcbiVD 43622 trsbcVD 43623 truniALTVD 43624 trintALTVD 43626 undif3VD 43628 sbcssgVD 43629 csbingVD 43630 simplbi2comtVD 43634 onfrALTVD 43637 csbeq2gVD 43638 csbsngVD 43639 csbxpgVD 43640 csbresgVD 43641 csbrngVD 43642 csbima12gALTVD 43643 csbunigVD 43644 csbfv12gALTVD 43645 con5VD 43646 relopabVD 43647 19.41rgVD 43648 2pm13.193VD 43649 hbimpgVD 43650 hbalgVD 43651 hbexgVD 43652 ax6e2eqVD 43653 ax6e2ndVD 43654 ax6e2ndeqVD 43655 2sb5ndVD 43656 2uasbanhVD 43657 e2ebindVD 43658 sb5ALTVD 43659 vk15.4jVD 43660 notnotrALTVD 43661 con3ALTVD 43662 sspwimpVD 43665 sspwimpcfVD 43667 suctrALTcfVD 43669 |
Copyright terms: Public domain | W3C validator |