Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version |
Description: Inference form of df-vd1 42079. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
Ref | Expression |
---|---|
in1 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | df-vd1 42079 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42079 |
This theorem is referenced by: vd12 42109 vd13 42110 gen11nv 42126 gen12 42127 exinst11 42135 e1a 42136 el1 42137 e223 42144 e111 42183 e1111 42184 el2122old 42228 el12 42235 el123 42273 un0.1 42288 trsspwALT 42327 sspwtr 42330 pwtrVD 42333 pwtrrVD 42334 snssiALTVD 42336 snsslVD 42338 snelpwrVD 42340 unipwrVD 42341 sstrALT2VD 42343 suctrALT2VD 42345 elex2VD 42347 elex22VD 42348 eqsbc2VD 42349 zfregs2VD 42350 tpid3gVD 42351 en3lplem1VD 42352 en3lplem2VD 42353 en3lpVD 42354 3ornot23VD 42356 orbi1rVD 42357 3orbi123VD 42359 sbc3orgVD 42360 19.21a3con13vVD 42361 exbirVD 42362 exbiriVD 42363 rspsbc2VD 42364 3impexpVD 42365 3impexpbicomVD 42366 sbcoreleleqVD 42368 tratrbVD 42370 al2imVD 42371 syl5impVD 42372 ssralv2VD 42375 ordelordALTVD 42376 equncomVD 42377 imbi12VD 42382 imbi13VD 42383 sbcim2gVD 42384 sbcbiVD 42385 trsbcVD 42386 truniALTVD 42387 trintALTVD 42389 undif3VD 42391 sbcssgVD 42392 csbingVD 42393 simplbi2comtVD 42397 onfrALTVD 42400 csbeq2gVD 42401 csbsngVD 42402 csbxpgVD 42403 csbresgVD 42404 csbrngVD 42405 csbima12gALTVD 42406 csbunigVD 42407 csbfv12gALTVD 42408 con5VD 42409 relopabVD 42410 19.41rgVD 42411 2pm13.193VD 42412 hbimpgVD 42413 hbalgVD 42414 hbexgVD 42415 ax6e2eqVD 42416 ax6e2ndVD 42417 ax6e2ndeqVD 42418 2sb5ndVD 42419 2uasbanhVD 42420 e2ebindVD 42421 sb5ALTVD 42422 vk15.4jVD 42423 notnotrALTVD 42424 con3ALTVD 42425 sspwimpVD 42428 sspwimpcfVD 42430 suctrALTcfVD 42432 |
Copyright terms: Public domain | W3C validator |