![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version |
Description: Inference form of df-vd1 44541. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
Ref | Expression |
---|---|
in1 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | df-vd1 44541 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 44540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-vd1 44541 |
This theorem is referenced by: vd12 44571 vd13 44572 gen11nv 44588 gen12 44589 exinst11 44597 e1a 44598 el1 44599 e223 44606 e111 44645 e1111 44646 el2122old 44690 el12 44697 el123 44735 un0.1 44750 trsspwALT 44789 sspwtr 44792 pwtrVD 44795 pwtrrVD 44796 snssiALTVD 44798 snsslVD 44800 snelpwrVD 44802 unipwrVD 44803 sstrALT2VD 44805 suctrALT2VD 44807 elex2VD 44809 elex22VD 44810 eqsbc2VD 44811 zfregs2VD 44812 tpid3gVD 44813 en3lplem1VD 44814 en3lplem2VD 44815 en3lpVD 44816 3ornot23VD 44818 orbi1rVD 44819 3orbi123VD 44821 sbc3orgVD 44822 19.21a3con13vVD 44823 exbirVD 44824 exbiriVD 44825 rspsbc2VD 44826 3impexpVD 44827 3impexpbicomVD 44828 sbcoreleleqVD 44830 tratrbVD 44832 al2imVD 44833 syl5impVD 44834 ssralv2VD 44837 ordelordALTVD 44838 equncomVD 44839 imbi12VD 44844 imbi13VD 44845 sbcim2gVD 44846 sbcbiVD 44847 trsbcVD 44848 truniALTVD 44849 trintALTVD 44851 undif3VD 44853 sbcssgVD 44854 csbingVD 44855 simplbi2comtVD 44859 onfrALTVD 44862 csbeq2gVD 44863 csbsngVD 44864 csbxpgVD 44865 csbresgVD 44866 csbrngVD 44867 csbima12gALTVD 44868 csbunigVD 44869 csbfv12gALTVD 44870 con5VD 44871 relopabVD 44872 19.41rgVD 44873 2pm13.193VD 44874 hbimpgVD 44875 hbalgVD 44876 hbexgVD 44877 ax6e2eqVD 44878 ax6e2ndVD 44879 ax6e2ndeqVD 44880 2sb5ndVD 44881 2uasbanhVD 44882 e2ebindVD 44883 sb5ALTVD 44884 vk15.4jVD 44885 notnotrALTVD 44886 con3ALTVD 44887 sspwimpVD 44890 sspwimpcfVD 44892 suctrALTcfVD 44894 |
Copyright terms: Public domain | W3C validator |