| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version | ||
| Description: Inference form of df-vd1 44553. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| in1 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | df-vd1 44553 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44553 |
| This theorem is referenced by: vd12 44583 vd13 44584 gen11nv 44600 gen12 44601 exinst11 44609 e1a 44610 el1 44611 e223 44618 e111 44657 e1111 44658 el2122old 44701 el12 44708 el123 44746 un0.1 44761 trsspwALT 44800 sspwtr 44803 pwtrVD 44806 pwtrrVD 44807 snssiALTVD 44809 snsslVD 44811 snelpwrVD 44813 unipwrVD 44814 sstrALT2VD 44816 suctrALT2VD 44818 elex2VD 44820 elex22VD 44821 eqsbc2VD 44822 zfregs2VD 44823 tpid3gVD 44824 en3lplem1VD 44825 en3lplem2VD 44826 en3lpVD 44827 3ornot23VD 44829 orbi1rVD 44830 3orbi123VD 44832 sbc3orgVD 44833 19.21a3con13vVD 44834 exbirVD 44835 exbiriVD 44836 rspsbc2VD 44837 3impexpVD 44838 3impexpbicomVD 44839 sbcoreleleqVD 44841 tratrbVD 44843 al2imVD 44844 syl5impVD 44845 ssralv2VD 44848 ordelordALTVD 44849 equncomVD 44850 imbi12VD 44855 imbi13VD 44856 sbcim2gVD 44857 sbcbiVD 44858 trsbcVD 44859 truniALTVD 44860 trintALTVD 44862 undif3VD 44864 sbcssgVD 44865 csbingVD 44866 simplbi2comtVD 44870 onfrALTVD 44873 csbeq2gVD 44874 csbsngVD 44875 csbxpgVD 44876 csbresgVD 44877 csbrngVD 44878 csbima12gALTVD 44879 csbunigVD 44880 csbfv12gALTVD 44881 con5VD 44882 relopabVD 44883 19.41rgVD 44884 2pm13.193VD 44885 hbimpgVD 44886 hbalgVD 44887 hbexgVD 44888 ax6e2eqVD 44889 ax6e2ndVD 44890 ax6e2ndeqVD 44891 2sb5ndVD 44892 2uasbanhVD 44893 e2ebindVD 44894 sb5ALTVD 44895 vk15.4jVD 44896 notnotrALTVD 44897 con3ALTVD 44898 sspwimpVD 44901 sspwimpcfVD 44903 suctrALTcfVD 44905 |
| Copyright terms: Public domain | W3C validator |