| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in1 | Structured version Visualization version GIF version | ||
| Description: Inference form of df-vd1 44560. Virtual deduction introduction rule of converting the virtual hypothesis of a 1-virtual hypothesis virtual deduction into an antecedent. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in1.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| in1 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in1.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | df-vd1 44560 | . 2 ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44560 |
| This theorem is referenced by: vd12 44590 vd13 44591 gen11nv 44607 gen12 44608 exinst11 44616 e1a 44617 el1 44618 e223 44625 e111 44664 e1111 44665 el2122old 44708 el12 44715 el123 44753 un0.1 44768 trsspwALT 44807 sspwtr 44810 pwtrVD 44813 pwtrrVD 44814 snssiALTVD 44816 snsslVD 44818 snelpwrVD 44820 unipwrVD 44821 sstrALT2VD 44823 suctrALT2VD 44825 elex2VD 44827 elex22VD 44828 eqsbc2VD 44829 zfregs2VD 44830 tpid3gVD 44831 en3lplem1VD 44832 en3lplem2VD 44833 en3lpVD 44834 3ornot23VD 44836 orbi1rVD 44837 3orbi123VD 44839 sbc3orgVD 44840 19.21a3con13vVD 44841 exbirVD 44842 exbiriVD 44843 rspsbc2VD 44844 3impexpVD 44845 3impexpbicomVD 44846 sbcoreleleqVD 44848 tratrbVD 44850 al2imVD 44851 syl5impVD 44852 ssralv2VD 44855 ordelordALTVD 44856 equncomVD 44857 imbi12VD 44862 imbi13VD 44863 sbcim2gVD 44864 sbcbiVD 44865 trsbcVD 44866 truniALTVD 44867 trintALTVD 44869 undif3VD 44871 sbcssgVD 44872 csbingVD 44873 simplbi2comtVD 44877 onfrALTVD 44880 csbeq2gVD 44881 csbsngVD 44882 csbxpgVD 44883 csbresgVD 44884 csbrngVD 44885 csbima12gALTVD 44886 csbunigVD 44887 csbfv12gALTVD 44888 con5VD 44889 relopabVD 44890 19.41rgVD 44891 2pm13.193VD 44892 hbimpgVD 44893 hbalgVD 44894 hbexgVD 44895 ax6e2eqVD 44896 ax6e2ndVD 44897 ax6e2ndeqVD 44898 2sb5ndVD 44899 2uasbanhVD 44900 e2ebindVD 44901 sb5ALTVD 44902 vk15.4jVD 44903 notnotrALTVD 44904 con3ALTVD 44905 sspwimpVD 44908 sspwimpcfVD 44910 suctrALTcfVD 44912 |
| Copyright terms: Public domain | W3C validator |