Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3an | Structured version Visualization version GIF version |
Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
Ref | Expression |
---|---|
syl3an.1 | ⊢ (𝜑 → 𝜓) |
syl3an.2 | ⊢ (𝜒 → 𝜃) |
syl3an.3 | ⊢ (𝜏 → 𝜂) |
syl3an.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl3an | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3an.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl3an.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
4 | 1, 2, 3 | 3anim123i 1150 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
5 | syl3an.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
6 | 4, 5 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Copyright terms: Public domain | W3C validator |