MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elequ2g Structured version   Visualization version   GIF version

Theorem elequ2g 2124
Description: A form of elequ2 2123 with a universal quantifier. Its converse is the axiom of extensionality ax-ext 2709. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
elequ2g (𝑥 = 𝑦 → ∀𝑧(𝑧𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem elequ2g
StepHypRef Expression
1 elequ2 2123 . 2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21alrimiv 1931 1 (𝑥 = 𝑦 → ∀𝑧(𝑧𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  axextb  2712
  Copyright terms: Public domain W3C validator