MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsb2 Structured version   Visualization version   GIF version

Theorem elsb2 2129
Description: Substitution for the second argument of the non-logical predicate in an atomic formula. See elsb1 2120 for substitution for the first argument. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Reduce axiom usage. (Revised by Wolf Lammen, 24-Jul-2023.)
Assertion
Ref Expression
elsb2 ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦)
Distinct variable group:   𝑥,𝑧

Proof of Theorem elsb2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2127 . 2 (𝑥 = 𝑤 → (𝑧𝑥𝑧𝑤))
2 elequ2 2127 . 2 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
31, 2sbievw2 2105 1 ([𝑦 / 𝑥]𝑧𝑥𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 209  [wsb 2072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-9 2122
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-sb 2073
This theorem is referenced by:  nfnid  5292
  Copyright terms: Public domain W3C validator