Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsb2 | Structured version Visualization version GIF version |
Description: Substitution for the second argument of the non-logical predicate in an atomic formula. See elsb1 2114 for substitution for the first argument. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Reduce axiom usage. (Revised by Wolf Lammen, 24-Jul-2023.) |
Ref | Expression |
---|---|
elsb2 | ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 2121 | . 2 ⊢ (𝑥 = 𝑤 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤)) | |
2 | elequ2 2121 | . 2 ⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) | |
3 | 1, 2 | sbievw2 2099 | 1 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 |
This theorem is referenced by: nfnid 5298 |
Copyright terms: Public domain | W3C validator |