MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axextb Structured version   Visualization version   GIF version

Theorem axextb 2709
Description: A bidirectional version of the axiom of extensionality. Although this theorem looks like a definition of equality, it requires the axiom of extensionality for its proof under our axiomatization. See the comments for ax-ext 2706 and df-cleq 2727. (Contributed by NM, 14-Nov-2008.)
Assertion
Ref Expression
axextb (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem axextb
StepHypRef Expression
1 elequ2g 2122 . 2 (𝑥 = 𝑦 → ∀𝑧(𝑧𝑥𝑧𝑦))
2 axextg 2708 . 2 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
31, 2impbii 209 1 (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777
This theorem is referenced by:  dfcleq  2728  axc11next  44402
  Copyright terms: Public domain W3C validator