| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax9 2125 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax9 2125 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 2021 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: elequ2g 2127 elsb2 2128 elequ12 2129 ax12wdemo 2138 dveel2 2462 axextg 2705 axextmo 2707 eleq2w 2815 nfcvf 2921 sbralie 3318 unissb 4889 dftr2c 5199 axrep1 5216 axreplem 5217 axrep4OLD 5222 axsepg 5233 bm1.3iiOLD 5238 nalset 5249 fv3 6840 zfun 7669 tz7.48lem 8360 coflton 8586 aceq1 10008 aceq0 10009 aceq2 10010 dfac2a 10021 kmlem4 10045 axdc3lem2 10342 zfac 10351 nd2 10479 nd3 10480 axrepndlem2 10484 axunndlem1 10486 axunnd 10487 axpowndlem2 10489 axpowndlem3 10490 axpowndlem4 10491 axpownd 10492 axregndlem2 10494 axregnd 10495 axinfndlem1 10496 axacndlem5 10502 zfcndrep 10505 zfcndun 10506 zfcndac 10510 axgroth4 10723 nqereu 10820 mdetunilem9 22535 neiptopnei 23047 2ndc1stc 23366 restlly 23398 kqt0lem 23651 regr1lem2 23655 nrmr0reg 23664 hauspwpwf1 23902 constrcbvlem 33768 dya2iocuni 34296 axsepg2 35094 axsepg2ALT 35095 axnulg 35119 erdsze 35246 untsucf 35754 untangtr 35758 dfon2lem3 35827 dfon2lem6 35830 dfon2lem7 35831 dfon2lem8 35832 dfon2 35834 axextbdist 35842 distel 35845 axextndbi 35846 fness 36393 fneref 36394 bj-axc14nf 36899 bj-bm1.3ii 37108 matunitlindflem1 37666 prtlem13 38977 prtlem15 38984 prtlem17 38985 dveel2ALT 39048 ax12el 39051 aomclem8 43164 unielss 43321 elintima 43756 mnuprdlem3 44377 ismnushort 44404 axc11next 44509 setcthin 49576 |
| Copyright terms: Public domain | W3C validator |