| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax9 2123 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax9 2123 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: elequ2g 2125 elsb2 2126 elequ12 2127 ax12wdemo 2136 dveel2 2460 axextg 2703 axextmo 2705 eleq2w 2812 nfcvf 2918 sbralie 3326 unissb 4903 dftr2c 5217 axrep1 5235 axreplem 5236 axrep4OLD 5241 axsepg 5252 bm1.3iiOLD 5257 nalset 5268 fv3 6876 zfun 7712 tz7.48lem 8409 coflton 8635 aceq1 10070 aceq0 10071 aceq2 10072 dfac2a 10083 kmlem4 10107 axdc3lem2 10404 zfac 10413 nd2 10541 nd3 10542 axrepndlem2 10546 axunndlem1 10548 axunnd 10549 axpowndlem2 10551 axpowndlem3 10552 axpowndlem4 10553 axpownd 10554 axregndlem2 10556 axregnd 10557 axinfndlem1 10558 axacndlem5 10564 zfcndrep 10567 zfcndun 10568 zfcndac 10572 axgroth4 10785 nqereu 10882 mdetunilem9 22507 neiptopnei 23019 2ndc1stc 23338 restlly 23370 kqt0lem 23623 regr1lem2 23627 nrmr0reg 23636 hauspwpwf1 23874 constrcbvlem 33745 dya2iocuni 34274 axsepg2 35072 axsepg2ALT 35073 axnulg 35082 erdsze 35189 untsucf 35697 untangtr 35701 dfon2lem3 35773 dfon2lem6 35776 dfon2lem7 35777 dfon2lem8 35778 dfon2 35780 axextbdist 35788 distel 35791 axextndbi 35792 fness 36337 fneref 36338 bj-axc14nf 36843 bj-bm1.3ii 37052 matunitlindflem1 37610 prtlem13 38861 prtlem15 38868 prtlem17 38869 dveel2ALT 38932 ax12el 38935 aomclem8 43050 unielss 43207 elintima 43642 mnuprdlem3 44263 ismnushort 44290 axc11next 44395 setcthin 49454 |
| Copyright terms: Public domain | W3C validator |