![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax9 2120 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax9 2120 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 2017 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 |
This theorem is referenced by: elequ2g 2122 elsb2 2123 elequ12 2124 ax12wdemo 2133 dveel2 2465 axextg 2708 axextmo 2710 eleq2w 2823 nfcvf 2930 unissb 4944 dftr2c 5268 axrep1 5286 axreplem 5287 axrep4OLD 5292 axsepg 5303 bm1.3iiOLD 5308 nalset 5319 fv3 6925 zfun 7755 tz7.48lem 8480 coflton 8708 aceq1 10155 aceq0 10156 aceq2 10157 dfac2a 10168 kmlem4 10192 axdc3lem2 10489 zfac 10498 nd2 10626 nd3 10627 axrepndlem2 10631 axunndlem1 10633 axunnd 10634 axpowndlem2 10636 axpowndlem3 10637 axpowndlem4 10638 axpownd 10639 axregndlem2 10641 axregnd 10642 axinfndlem1 10643 axacndlem5 10649 zfcndrep 10652 zfcndun 10653 zfcndac 10657 axgroth4 10870 nqereu 10967 mdetunilem9 22642 neiptopnei 23156 2ndc1stc 23475 restlly 23507 kqt0lem 23760 regr1lem2 23764 nrmr0reg 23773 hauspwpwf1 24011 dya2iocuni 34265 axsepg2 35075 axsepg2ALT 35076 axnulg 35085 erdsze 35187 untsucf 35690 untangtr 35694 dfon2lem3 35767 dfon2lem6 35770 dfon2lem7 35771 dfon2lem8 35772 dfon2 35774 axextbdist 35782 distel 35785 axextndbi 35786 fness 36332 fneref 36333 bj-axc14nf 36838 bj-bm1.3ii 37047 matunitlindflem1 37603 prtlem13 38850 prtlem15 38857 prtlem17 38858 dveel2ALT 38921 ax12el 38924 aomclem8 43050 unielss 43207 elintima 43643 mnuprdlem3 44270 ismnushort 44297 axc11next 44402 setcthin 48856 |
Copyright terms: Public domain | W3C validator |