| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax9 2123 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax9 2123 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: elequ2g 2125 elsb2 2126 elequ12 2127 ax12wdemo 2136 dveel2 2461 axextg 2704 axextmo 2706 eleq2w 2813 nfcvf 2919 sbralie 3328 unissb 4906 dftr2c 5220 axrep1 5238 axreplem 5239 axrep4OLD 5244 axsepg 5255 bm1.3iiOLD 5260 nalset 5271 fv3 6879 zfun 7715 tz7.48lem 8412 coflton 8638 aceq1 10077 aceq0 10078 aceq2 10079 dfac2a 10090 kmlem4 10114 axdc3lem2 10411 zfac 10420 nd2 10548 nd3 10549 axrepndlem2 10553 axunndlem1 10555 axunnd 10556 axpowndlem2 10558 axpowndlem3 10559 axpowndlem4 10560 axpownd 10561 axregndlem2 10563 axregnd 10564 axinfndlem1 10565 axacndlem5 10571 zfcndrep 10574 zfcndun 10575 zfcndac 10579 axgroth4 10792 nqereu 10889 mdetunilem9 22514 neiptopnei 23026 2ndc1stc 23345 restlly 23377 kqt0lem 23630 regr1lem2 23634 nrmr0reg 23643 hauspwpwf1 23881 constrcbvlem 33752 dya2iocuni 34281 axsepg2 35079 axsepg2ALT 35080 axnulg 35089 erdsze 35196 untsucf 35704 untangtr 35708 dfon2lem3 35780 dfon2lem6 35783 dfon2lem7 35784 dfon2lem8 35785 dfon2 35787 axextbdist 35795 distel 35798 axextndbi 35799 fness 36344 fneref 36345 bj-axc14nf 36850 bj-bm1.3ii 37059 matunitlindflem1 37617 prtlem13 38868 prtlem15 38875 prtlem17 38876 dveel2ALT 38939 ax12el 38942 aomclem8 43057 unielss 43214 elintima 43649 mnuprdlem3 44270 ismnushort 44297 axc11next 44402 setcthin 49458 |
| Copyright terms: Public domain | W3C validator |