| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax9 2123 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax9 2123 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: elequ2g 2125 elsb2 2126 elequ12 2127 ax12wdemo 2136 dveel2 2460 axextg 2703 axextmo 2705 eleq2w 2812 nfcvf 2918 sbralie 3323 unissb 4899 dftr2c 5212 axrep1 5230 axreplem 5231 axrep4OLD 5236 axsepg 5247 bm1.3iiOLD 5252 nalset 5263 fv3 6858 zfun 7692 tz7.48lem 8386 coflton 8612 aceq1 10046 aceq0 10047 aceq2 10048 dfac2a 10059 kmlem4 10083 axdc3lem2 10380 zfac 10389 nd2 10517 nd3 10518 axrepndlem2 10522 axunndlem1 10524 axunnd 10525 axpowndlem2 10527 axpowndlem3 10528 axpowndlem4 10529 axpownd 10530 axregndlem2 10532 axregnd 10533 axinfndlem1 10534 axacndlem5 10540 zfcndrep 10543 zfcndun 10544 zfcndac 10548 axgroth4 10761 nqereu 10858 mdetunilem9 22540 neiptopnei 23052 2ndc1stc 23371 restlly 23403 kqt0lem 23656 regr1lem2 23660 nrmr0reg 23669 hauspwpwf1 23907 constrcbvlem 33738 dya2iocuni 34267 axsepg2 35065 axsepg2ALT 35066 axnulg 35075 erdsze 35182 untsucf 35690 untangtr 35694 dfon2lem3 35766 dfon2lem6 35769 dfon2lem7 35770 dfon2lem8 35771 dfon2 35773 axextbdist 35781 distel 35784 axextndbi 35785 fness 36330 fneref 36331 bj-axc14nf 36836 bj-bm1.3ii 37045 matunitlindflem1 37603 prtlem13 38854 prtlem15 38861 prtlem17 38862 dveel2ALT 38925 ax12el 38928 aomclem8 43043 unielss 43200 elintima 43635 mnuprdlem3 44256 ismnushort 44283 axc11next 44388 setcthin 49447 |
| Copyright terms: Public domain | W3C validator |