Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax9 2121 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax9 2121 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 2024 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: elequ2g 2123 elsb2 2124 ax12wdemo 2132 dveel2 2463 axextg 2712 axextmo 2714 eleq2w 2823 nfcvf 2937 axrep1 5211 axreplem 5212 axrep4 5215 axsepg 5225 bm1.3ii 5227 nalset 5238 fv3 6801 zfun 7598 tz7.48lem 8281 aceq1 9882 aceq0 9883 aceq2 9884 dfac2a 9894 kmlem4 9918 axdc3lem2 10216 zfac 10225 nd2 10353 nd3 10354 axrepndlem2 10358 axunndlem1 10360 axunnd 10361 axpowndlem2 10363 axpowndlem3 10364 axpowndlem4 10365 axpownd 10366 axregndlem2 10368 axregnd 10369 axinfndlem1 10370 axacndlem5 10376 zfcndrep 10379 zfcndun 10380 zfcndac 10384 axgroth4 10597 nqereu 10694 mdetunilem9 21778 neiptopnei 22292 2ndc1stc 22611 restlly 22643 kqt0lem 22896 regr1lem2 22900 nrmr0reg 22909 hauspwpwf1 23147 dya2iocuni 32259 erdsze 33173 untsucf 33660 untangtr 33664 dfon2lem3 33770 dfon2lem6 33773 dfon2lem7 33774 dfon2lem8 33775 dfon2 33777 axextbdist 33785 distel 33788 axextndbi 33789 fness 34547 fneref 34548 bj-elequ12 34869 bj-axc14nf 35048 bj-bm1.3ii 35244 matunitlindflem1 35782 prtlem13 36889 prtlem15 36896 prtlem17 36897 dveel2ALT 36960 ax12el 36963 aomclem8 40893 elintima 41268 mnuprdlem3 41899 ismnushort 41926 axc11next 42031 setcthin 46347 |
Copyright terms: Public domain | W3C validator |