| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax9 2122 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax9 2122 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 2019 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: elequ2g 2124 elsb2 2125 elequ12 2126 ax12wdemo 2135 dveel2 2466 axextg 2709 axextmo 2711 eleq2w 2818 nfcvf 2925 unissb 4915 dftr2c 5232 axrep1 5250 axreplem 5251 axrep4OLD 5256 axsepg 5267 bm1.3iiOLD 5272 nalset 5283 fv3 6894 zfun 7730 tz7.48lem 8455 coflton 8683 aceq1 10131 aceq0 10132 aceq2 10133 dfac2a 10144 kmlem4 10168 axdc3lem2 10465 zfac 10474 nd2 10602 nd3 10603 axrepndlem2 10607 axunndlem1 10609 axunnd 10610 axpowndlem2 10612 axpowndlem3 10613 axpowndlem4 10614 axpownd 10615 axregndlem2 10617 axregnd 10618 axinfndlem1 10619 axacndlem5 10625 zfcndrep 10628 zfcndun 10629 zfcndac 10633 axgroth4 10846 nqereu 10943 mdetunilem9 22558 neiptopnei 23070 2ndc1stc 23389 restlly 23421 kqt0lem 23674 regr1lem2 23678 nrmr0reg 23687 hauspwpwf1 23925 constrcbvlem 33789 dya2iocuni 34315 axsepg2 35113 axsepg2ALT 35114 axnulg 35123 erdsze 35224 untsucf 35727 untangtr 35731 dfon2lem3 35803 dfon2lem6 35806 dfon2lem7 35807 dfon2lem8 35808 dfon2 35810 axextbdist 35818 distel 35821 axextndbi 35822 fness 36367 fneref 36368 bj-axc14nf 36873 bj-bm1.3ii 37082 matunitlindflem1 37640 prtlem13 38886 prtlem15 38893 prtlem17 38894 dveel2ALT 38957 ax12el 38960 aomclem8 43085 unielss 43242 elintima 43677 mnuprdlem3 44298 ismnushort 44325 axc11next 44430 setcthin 49351 |
| Copyright terms: Public domain | W3C validator |