![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax9 2122 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax9 2122 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 2019 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: elequ2g 2124 elsb2 2125 elequ12 2126 ax12wdemo 2135 dveel2 2470 axextg 2713 axextmo 2715 eleq2w 2828 nfcvf 2938 unissb 4963 dftr2c 5286 axrep1 5304 axreplem 5305 axrep4 5308 axsepg 5318 bm1.3ii 5320 nalset 5331 fv3 6938 zfun 7771 tz7.48lem 8497 coflton 8727 aceq1 10186 aceq0 10187 aceq2 10188 dfac2a 10199 kmlem4 10223 axdc3lem2 10520 zfac 10529 nd2 10657 nd3 10658 axrepndlem2 10662 axunndlem1 10664 axunnd 10665 axpowndlem2 10667 axpowndlem3 10668 axpowndlem4 10669 axpownd 10670 axregndlem2 10672 axregnd 10673 axinfndlem1 10674 axacndlem5 10680 zfcndrep 10683 zfcndun 10684 zfcndac 10688 axgroth4 10901 nqereu 10998 mdetunilem9 22647 neiptopnei 23161 2ndc1stc 23480 restlly 23512 kqt0lem 23765 regr1lem2 23769 nrmr0reg 23778 hauspwpwf1 24016 dya2iocuni 34248 axsepg2 35058 axsepg2ALT 35059 axnulg 35068 erdsze 35170 untsucf 35672 untangtr 35676 dfon2lem3 35749 dfon2lem6 35752 dfon2lem7 35753 dfon2lem8 35754 dfon2 35756 axextbdist 35764 distel 35767 axextndbi 35768 fness 36315 fneref 36316 bj-axc14nf 36821 bj-bm1.3ii 37030 matunitlindflem1 37576 prtlem13 38824 prtlem15 38831 prtlem17 38832 dveel2ALT 38895 ax12el 38898 aomclem8 43018 unielss 43179 elintima 43615 mnuprdlem3 44243 ismnushort 44270 axc11next 44375 setcthin 48722 |
Copyright terms: Public domain | W3C validator |