Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax9 2122 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax9 2122 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 2024 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: elequ2g 2124 elsb2 2125 ax12wdemo 2133 dveel2 2462 axextg 2711 axextmo 2713 eleq2w 2822 nfcvf 2935 axrep1 5206 axreplem 5207 axrep4 5210 axsepg 5219 bm1.3ii 5221 nalset 5232 fv3 6774 zfun 7567 tz7.48lem 8242 aceq1 9804 aceq0 9805 aceq2 9806 dfac2a 9816 kmlem4 9840 axdc3lem2 10138 zfac 10147 nd2 10275 nd3 10276 axrepndlem2 10280 axunndlem1 10282 axunnd 10283 axpowndlem2 10285 axpowndlem3 10286 axpowndlem4 10287 axpownd 10288 axregndlem2 10290 axregnd 10291 axinfndlem1 10292 axacndlem5 10298 zfcndrep 10301 zfcndun 10302 zfcndac 10306 axgroth4 10519 nqereu 10616 mdetunilem9 21677 neiptopnei 22191 2ndc1stc 22510 restlly 22542 kqt0lem 22795 regr1lem2 22799 nrmr0reg 22808 hauspwpwf1 23046 dya2iocuni 32150 erdsze 33064 untsucf 33551 untangtr 33555 dfon2lem3 33667 dfon2lem6 33670 dfon2lem7 33671 dfon2lem8 33672 dfon2 33674 axextbdist 33682 distel 33685 axextndbi 33686 fness 34465 fneref 34466 bj-elequ12 34787 bj-axc14nf 34966 bj-bm1.3ii 35162 matunitlindflem1 35700 prtlem13 36809 prtlem15 36816 prtlem17 36817 dveel2ALT 36880 ax12el 36883 aomclem8 40802 elintima 41150 mnuprdlem3 41781 ismnushort 41808 axc11next 41913 setcthin 46224 |
Copyright terms: Public domain | W3C validator |