| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax9 2123 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax9 2123 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: elequ2g 2125 elsb2 2126 elequ12 2127 ax12wdemo 2136 dveel2 2460 axextg 2703 axextmo 2705 eleq2w 2812 nfcvf 2918 sbralie 3323 unissb 4899 dftr2c 5212 axrep1 5230 axreplem 5231 axrep4OLD 5236 axsepg 5247 bm1.3iiOLD 5252 nalset 5263 fv3 6858 zfun 7692 tz7.48lem 8386 coflton 8612 aceq1 10046 aceq0 10047 aceq2 10048 dfac2a 10059 kmlem4 10083 axdc3lem2 10380 zfac 10389 nd2 10517 nd3 10518 axrepndlem2 10522 axunndlem1 10524 axunnd 10525 axpowndlem2 10527 axpowndlem3 10528 axpowndlem4 10529 axpownd 10530 axregndlem2 10532 axregnd 10533 axinfndlem1 10534 axacndlem5 10540 zfcndrep 10543 zfcndun 10544 zfcndac 10548 axgroth4 10761 nqereu 10858 mdetunilem9 22483 neiptopnei 22995 2ndc1stc 23314 restlly 23346 kqt0lem 23599 regr1lem2 23603 nrmr0reg 23612 hauspwpwf1 23850 constrcbvlem 33718 dya2iocuni 34247 axsepg2 35045 axsepg2ALT 35046 axnulg 35055 erdsze 35162 untsucf 35670 untangtr 35674 dfon2lem3 35746 dfon2lem6 35749 dfon2lem7 35750 dfon2lem8 35751 dfon2 35753 axextbdist 35761 distel 35764 axextndbi 35765 fness 36310 fneref 36311 bj-axc14nf 36816 bj-bm1.3ii 37025 matunitlindflem1 37583 prtlem13 38834 prtlem15 38841 prtlem17 38842 dveel2ALT 38905 ax12el 38908 aomclem8 43023 unielss 43180 elintima 43615 mnuprdlem3 44236 ismnushort 44263 axc11next 44368 setcthin 49427 |
| Copyright terms: Public domain | W3C validator |