| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax9 2123 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax9 2123 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: elequ2g 2125 elsb2 2126 elequ12 2127 ax12wdemo 2136 dveel2 2460 axextg 2703 axextmo 2705 eleq2w 2812 nfcvf 2918 sbralie 3315 unissb 4890 dftr2c 5202 axrep1 5219 axreplem 5220 axrep4OLD 5225 axsepg 5236 bm1.3iiOLD 5241 nalset 5252 fv3 6840 zfun 7672 tz7.48lem 8363 coflton 8589 aceq1 10011 aceq0 10012 aceq2 10013 dfac2a 10024 kmlem4 10048 axdc3lem2 10345 zfac 10354 nd2 10482 nd3 10483 axrepndlem2 10487 axunndlem1 10489 axunnd 10490 axpowndlem2 10492 axpowndlem3 10493 axpowndlem4 10494 axpownd 10495 axregndlem2 10497 axregnd 10498 axinfndlem1 10499 axacndlem5 10505 zfcndrep 10508 zfcndun 10509 zfcndac 10513 axgroth4 10726 nqereu 10823 mdetunilem9 22505 neiptopnei 23017 2ndc1stc 23336 restlly 23368 kqt0lem 23621 regr1lem2 23625 nrmr0reg 23634 hauspwpwf1 23872 constrcbvlem 33722 dya2iocuni 34251 axsepg2 35049 axsepg2ALT 35050 axnulg 35059 erdsze 35179 untsucf 35687 untangtr 35691 dfon2lem3 35763 dfon2lem6 35766 dfon2lem7 35767 dfon2lem8 35768 dfon2 35770 axextbdist 35778 distel 35781 axextndbi 35782 fness 36327 fneref 36328 bj-axc14nf 36833 bj-bm1.3ii 37042 matunitlindflem1 37600 prtlem13 38851 prtlem15 38858 prtlem17 38859 dveel2ALT 38922 ax12el 38925 aomclem8 43038 unielss 43195 elintima 43630 mnuprdlem3 44251 ismnushort 44278 axc11next 44383 setcthin 49454 |
| Copyright terms: Public domain | W3C validator |