Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elequ2 | Structured version Visualization version GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax9 2123 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax9 2123 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 2026 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 |
This theorem is referenced by: elequ2g 2125 elsb2 2126 ax12wdemo 2134 dveel2 2463 axextg 2712 axextmo 2714 eleq2w 2823 nfcvf 2937 axrep1 5214 axreplem 5215 axrep4 5218 axsepg 5227 bm1.3ii 5229 nalset 5240 fv3 6786 zfun 7580 tz7.48lem 8256 aceq1 9857 aceq0 9858 aceq2 9859 dfac2a 9869 kmlem4 9893 axdc3lem2 10191 zfac 10200 nd2 10328 nd3 10329 axrepndlem2 10333 axunndlem1 10335 axunnd 10336 axpowndlem2 10338 axpowndlem3 10339 axpowndlem4 10340 axpownd 10341 axregndlem2 10343 axregnd 10344 axinfndlem1 10345 axacndlem5 10351 zfcndrep 10354 zfcndun 10355 zfcndac 10359 axgroth4 10572 nqereu 10669 mdetunilem9 21750 neiptopnei 22264 2ndc1stc 22583 restlly 22615 kqt0lem 22868 regr1lem2 22872 nrmr0reg 22881 hauspwpwf1 23119 dya2iocuni 32229 erdsze 33143 untsucf 33630 untangtr 33634 dfon2lem3 33740 dfon2lem6 33743 dfon2lem7 33744 dfon2lem8 33745 dfon2 33747 axextbdist 33755 distel 33758 axextndbi 33759 fness 34517 fneref 34518 bj-elequ12 34839 bj-axc14nf 35018 bj-bm1.3ii 35214 matunitlindflem1 35752 prtlem13 36861 prtlem15 36868 prtlem17 36869 dveel2ALT 36932 ax12el 36935 aomclem8 40866 elintima 41214 mnuprdlem3 41845 ismnushort 41872 axc11next 41977 setcthin 46288 |
Copyright terms: Public domain | W3C validator |