Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > emptyal | Structured version Visualization version GIF version |
Description: On the empty domain, any universally quantified formula is true. (Contributed by Wolf Lammen, 12-Mar-2023.) |
Ref | Expression |
---|---|
emptyal | ⊢ (¬ ∃𝑥⊤ → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | emptyex 1910 | . 2 ⊢ (¬ ∃𝑥⊤ → ¬ ∃𝑥 ¬ 𝜑) | |
2 | alex 1828 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (¬ ∃𝑥⊤ → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ⊤wtru 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-ex 1783 |
This theorem is referenced by: emptynf 1912 |
Copyright terms: Public domain | W3C validator |