MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emptyal Structured version   Visualization version   GIF version

Theorem emptyal 1911
Description: On the empty domain, any universally quantified formula is true. (Contributed by Wolf Lammen, 12-Mar-2023.)
Assertion
Ref Expression
emptyal (¬ ∃𝑥⊤ → ∀𝑥𝜑)

Proof of Theorem emptyal
StepHypRef Expression
1 emptyex 1910 . 2 (¬ ∃𝑥⊤ → ¬ ∃𝑥 ¬ 𝜑)
2 alex 1828 . 2 (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
31, 2sylibr 233 1 (¬ ∃𝑥⊤ → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wtru 1540  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-ex 1783
This theorem is referenced by:  emptynf  1912
  Copyright terms: Public domain W3C validator