|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > emptyal | Structured version Visualization version GIF version | ||
| Description: On the empty domain, any universally quantified formula is true. (Contributed by Wolf Lammen, 12-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| emptyal | ⊢ (¬ ∃𝑥⊤ → ∀𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | emptyex 1906 | . 2 ⊢ (¬ ∃𝑥⊤ → ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | alex 1825 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (¬ ∃𝑥⊤ → ∀𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ⊤wtru 1540 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-ex 1779 | 
| This theorem is referenced by: emptynf 1908 | 
| Copyright terms: Public domain | W3C validator |