Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > emptyex | Structured version Visualization version GIF version |
Description: On the empty domain, any existentially quantified formula is false. (Contributed by Wolf Lammen, 21-Jan-2024.) |
Ref | Expression |
---|---|
emptyex | ⊢ (¬ ∃𝑥⊤ → ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trud 1550 | . . 3 ⊢ (𝜑 → ⊤) | |
2 | 1 | eximi 1836 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥⊤) |
3 | 2 | con3i 154 | 1 ⊢ (¬ ∃𝑥⊤ → ¬ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊤wtru 1541 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-tru 1543 df-ex 1781 |
This theorem is referenced by: emptyal 1910 |
Copyright terms: Public domain | W3C validator |