MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emptyex Structured version   Visualization version   GIF version

Theorem emptyex 1911
Description: On the empty domain, any existentially quantified formula is false. (Contributed by Wolf Lammen, 21-Jan-2024.)
Assertion
Ref Expression
emptyex (¬ ∃𝑥⊤ → ¬ ∃𝑥𝜑)

Proof of Theorem emptyex
StepHypRef Expression
1 trud 1549 . . 3 (𝜑 → ⊤)
21eximi 1838 . 2 (∃𝑥𝜑 → ∃𝑥⊤)
32con3i 154 1 (¬ ∃𝑥⊤ → ¬ ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wtru 1540  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-ex 1784
This theorem is referenced by:  emptyal  1912
  Copyright terms: Public domain W3C validator