![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > emptynf | Structured version Visualization version GIF version |
Description: On the empty domain, any variable is effectively nonfree in any formula. (Contributed by Wolf Lammen, 12-Mar-2023.) |
Ref | Expression |
---|---|
emptynf | ⊢ (¬ ∃𝑥⊤ → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | emptyal 1911 | . 2 ⊢ (¬ ∃𝑥⊤ → ∀𝑥𝜑) | |
2 | nftht 1794 | . 2 ⊢ (∀𝑥𝜑 → Ⅎ𝑥𝜑) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ ∃𝑥⊤ → Ⅎ𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ⊤wtru 1542 ∃wex 1781 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-tru 1544 df-ex 1782 df-nf 1786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |