MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emptynf Structured version   Visualization version   GIF version

Theorem emptynf 1917
Description: On the empty domain, any variable is effectively nonfree in any formula. (Contributed by Wolf Lammen, 12-Mar-2023.)
Assertion
Ref Expression
emptynf (¬ ∃𝑥⊤ → Ⅎ𝑥𝜑)

Proof of Theorem emptynf
StepHypRef Expression
1 emptyal 1916 . 2 (¬ ∃𝑥⊤ → ∀𝑥𝜑)
2 nftht 1800 . 2 (∀𝑥𝜑 → Ⅎ𝑥𝜑)
31, 2syl 17 1 (¬ ∃𝑥⊤ → Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1541  wtru 1544  wex 1787  wnf 1791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817
This theorem depends on definitions:  df-bi 210  df-tru 1546  df-ex 1788  df-nf 1792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator