Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > emptynf | Structured version Visualization version GIF version |
Description: On the empty domain, any variable is effectively nonfree in any formula. (Contributed by Wolf Lammen, 12-Mar-2023.) |
Ref | Expression |
---|---|
emptynf | ⊢ (¬ ∃𝑥⊤ → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | emptyal 1916 | . 2 ⊢ (¬ ∃𝑥⊤ → ∀𝑥𝜑) | |
2 | nftht 1800 | . 2 ⊢ (∀𝑥𝜑 → Ⅎ𝑥𝜑) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ ∃𝑥⊤ → Ⅎ𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1541 ⊤wtru 1544 ∃wex 1787 Ⅎwnf 1791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 |
This theorem depends on definitions: df-bi 210 df-tru 1546 df-ex 1788 df-nf 1792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |