Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alex | Structured version Visualization version GIF version |
Description: Universal quantifier in terms of existential quantifier and negation. Dual of df-ex 1784. See also the dual pair alnex 1785 / exnal 1830. Theorem 19.6 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
alex | ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | 1 | albii 1823 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥 ¬ ¬ 𝜑) |
3 | alnex 1785 | . 2 ⊢ (∀𝑥 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: exnal 1830 2nalexn 1831 alimex 1834 emptyal 1912 nfa1 2150 sp 2178 exists2 2663 pm10.253 41869 vk15.4j 42037 vk15.4jVD 42423 |
Copyright terms: Public domain | W3C validator |