MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nftht Structured version   Visualization version   GIF version

Theorem nftht 1796
Description: Closed form of nfth 1805. (Contributed by Wolf Lammen, 19-Aug-2018.) (Proof shortened by BJ, 16-Sep-2021.) (Proof shortened by Wolf Lammen, 3-Sep-2022.)
Assertion
Ref Expression
nftht (∀𝑥𝜑 → Ⅎ𝑥𝜑)

Proof of Theorem nftht
StepHypRef Expression
1 ax-1 6 . 2 (∀𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
21nfd 1794 1 (∀𝑥𝜑 → Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-nf 1788
This theorem is referenced by:  nfth  1805  emptynf  1913  nfim1  2195  wl-nfeqfb  35622
  Copyright terms: Public domain W3C validator