|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelrefrel | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is reflexive. (Contributed by Peter Mazsa, 29-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| eqvrelrefrel | ⊢ ( EqvRel 𝑅 → RefRel 𝑅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-eqvrel 38587 | . 2 ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ ( EqvRel 𝑅 → RefRel 𝑅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 RefRel wrefrel 38189 SymRel wsymrel 38195 TrRel wtrrel 38198 EqvRel weqvrel 38200 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-eqvrel 38587 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |