| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: limord 6372 smores2 8280 smofvon2 8282 smofvon 8285 errel 8637 elunitrn 13369 lincmb01cmp 13397 iccf1o 13398 elfznn0 13522 elfzouz 13565 ef01bndlem 16095 sin01bnd 16096 cos01bnd 16097 sin01gt0 16101 cos01gt0 16102 sin02gt0 16103 gzcn 16846 mresspw 17496 drsprs 18211 ipodrscl 18446 subgrcl 19046 pmtrfconj 19380 pgpprm 19507 slwprm 19523 efgsdmi 19646 efgsrel 19648 efgs1b 19650 efgsp1 19651 efgsres 19652 efgsfo 19653 efgredlema 19654 efgredlemf 19655 efgredlemd 19658 efgredlemc 19659 efgredlem 19661 efgrelexlemb 19664 efgcpbllemb 19669 omndmnd 20040 rngabl 20075 srgcmn 20109 ringgrp 20158 irredcl 20344 subrngrcl 20468 sdrgrcl 20706 orngring 20779 lmodgrp 20802 lssss 20871 phllvec 21568 obsrcl 21662 locfintop 23437 fclstop 23927 tmdmnd 23991 tgpgrp 23994 trgtgp 24084 tdrgtrg 24089 ust0 24136 ngpgrp 24515 elii1 24859 elii2 24860 icopnfcnv 24868 icopnfhmeo 24869 iccpnfhmeo 24871 xrhmeo 24872 oprpiece1res2 24878 phtpcer 24922 pcoval2 24944 pcoass 24952 clmlmod 24995 cphphl 25099 cphnlm 25100 cphsca 25107 bnnvc 25268 uc1pcl 26077 mon1pcl 26078 sinq12ge0 26445 cosq14ge0 26448 cosq34lt1 26464 cosord 26468 cos11 26470 recosf1o 26472 resinf1o 26473 efifo 26484 logrncn 26499 atanf 26818 atanneg 26845 efiatan 26850 atanlogaddlem 26851 atanlogadd 26852 atanlogsub 26854 efiatan2 26855 2efiatan 26856 tanatan 26857 areass 26897 dchrvmasumlem2 27437 dchrvmasumiflem1 27440 brbtwn2 28885 ax5seglem1 28908 ax5seglem2 28909 ax5seglem3 28911 ax5seglem5 28913 ax5seglem6 28914 ax5seglem9 28917 ax5seg 28918 axbtwnid 28919 axpaschlem 28920 axpasch 28921 axcontlem2 28945 axcontlem4 28947 axcontlem7 28950 pthistrl 29703 clwwlkbp 29967 sticl 32197 hstcl 32199 slmdcmn 33181 rrextnrg 34035 rrextdrg 34036 rossspw 34203 srossspw 34210 eulerpartlemd 34400 eulerpartlemf 34404 eulerpartlemgvv 34410 eulerpartlemgu 34411 eulerpartlemgh 34412 eulerpartlemgs2 34414 eulerpartlemn 34415 bnj564 34777 bnj1366 34862 bnj545 34928 bnj548 34930 bnj558 34935 bnj570 34938 bnj580 34946 bnj929 34969 bnj998 34990 bnj1006 34993 bnj1190 35041 bnj1523 35104 msrval 35603 mthmpps 35647 eqvrelrefrel 38715 atllat 39420 stoweidlem60 46183 fourierdlem111 46340 modmknepk 47487 prproropf1o 47632 gpgedgvtx1 48187 arweutermc 49656 |
| Copyright terms: Public domain | W3C validator |