| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: limord 6372 smores2 8284 smofvon2 8286 smofvon 8289 errel 8641 elunitrn 13388 lincmb01cmp 13416 iccf1o 13417 elfznn0 13541 elfzouz 13584 ef01bndlem 16111 sin01bnd 16112 cos01bnd 16113 sin01gt0 16117 cos01gt0 16118 sin02gt0 16119 gzcn 16862 mresspw 17512 drsprs 18227 ipodrscl 18462 subgrcl 19028 pmtrfconj 19363 pgpprm 19490 slwprm 19506 efgsdmi 19629 efgsrel 19631 efgs1b 19633 efgsp1 19634 efgsres 19635 efgsfo 19636 efgredlema 19637 efgredlemf 19638 efgredlemd 19641 efgredlemc 19642 efgredlem 19644 efgrelexlemb 19647 efgcpbllemb 19652 omndmnd 20023 rngabl 20058 srgcmn 20092 ringgrp 20141 irredcl 20327 subrngrcl 20454 sdrgrcl 20692 orngring 20765 lmodgrp 20788 lssss 20857 phllvec 21554 obsrcl 21648 locfintop 23424 fclstop 23914 tmdmnd 23978 tgpgrp 23981 trgtgp 24071 tdrgtrg 24076 ust0 24123 ngpgrp 24503 elii1 24847 elii2 24848 icopnfcnv 24856 icopnfhmeo 24857 iccpnfhmeo 24859 xrhmeo 24860 oprpiece1res2 24866 phtpcer 24910 pcoval2 24932 pcoass 24940 clmlmod 24983 cphphl 25087 cphnlm 25088 cphsca 25095 bnnvc 25256 uc1pcl 26065 mon1pcl 26066 sinq12ge0 26433 cosq14ge0 26436 cosq34lt1 26452 cosord 26456 cos11 26458 recosf1o 26460 resinf1o 26461 efifo 26472 logrncn 26487 atanf 26806 atanneg 26833 efiatan 26838 atanlogaddlem 26839 atanlogadd 26840 atanlogsub 26842 efiatan2 26843 2efiatan 26844 tanatan 26845 areass 26885 dchrvmasumlem2 27425 dchrvmasumiflem1 27428 brbtwn2 28868 ax5seglem1 28891 ax5seglem2 28892 ax5seglem3 28894 ax5seglem5 28896 ax5seglem6 28897 ax5seglem9 28900 ax5seg 28901 axbtwnid 28902 axpaschlem 28903 axpasch 28904 axcontlem2 28928 axcontlem4 28930 axcontlem7 28933 pthistrl 29686 clwwlkbp 29947 sticl 32177 hstcl 32179 slmdcmn 33157 rrextnrg 33967 rrextdrg 33968 rossspw 34135 srossspw 34142 eulerpartlemd 34333 eulerpartlemf 34337 eulerpartlemgvv 34343 eulerpartlemgu 34344 eulerpartlemgh 34345 eulerpartlemgs2 34347 eulerpartlemn 34348 bnj564 34710 bnj1366 34795 bnj545 34861 bnj548 34863 bnj558 34868 bnj570 34871 bnj580 34879 bnj929 34902 bnj998 34923 bnj1006 34926 bnj1190 34974 bnj1523 35037 msrval 35510 mthmpps 35554 eqvrelrefrel 38574 atllat 39278 stoweidlem60 46042 fourierdlem111 46199 modmknepk 47347 prproropf1o 47492 gpgedgvtx1 48047 arweutermc 49516 |
| Copyright terms: Public domain | W3C validator |