![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1143 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: limord 6425 smores2 8354 smofvon2 8356 smofvon 8359 errel 8712 elunitrn 13444 lincmb01cmp 13472 iccf1o 13473 elfznn0 13594 elfzouz 13636 ef01bndlem 16127 sin01bnd 16128 cos01bnd 16129 sin01gt0 16133 cos01gt0 16134 sin02gt0 16135 gzcn 16865 mresspw 17536 drsprs 18256 ipodrscl 18491 subgrcl 19011 pmtrfconj 19334 pgpprm 19461 slwprm 19477 efgsdmi 19600 efgsrel 19602 efgs1b 19604 efgsp1 19605 efgsres 19606 efgsfo 19607 efgredlema 19608 efgredlemf 19609 efgredlemd 19612 efgredlemc 19613 efgredlem 19615 efgrelexlemb 19618 efgcpbllemb 19623 srgcmn 20012 ringgrp 20061 irredcl 20238 sdrgrcl 20405 lmodgrp 20478 lssss 20547 phllvec 21182 obsrcl 21278 locfintop 23025 fclstop 23515 tmdmnd 23579 tgpgrp 23582 trgtgp 23672 tdrgtrg 23677 ust0 23724 ngpgrp 24108 elii1 24451 elii2 24452 icopnfcnv 24458 icopnfhmeo 24459 iccpnfhmeo 24461 xrhmeo 24462 oprpiece1res2 24468 phtpcer 24511 pcoval2 24532 pcoass 24540 clmlmod 24583 cphphl 24688 cphnlm 24689 cphsca 24696 bnnvc 24857 uc1pcl 25661 mon1pcl 25662 sinq12ge0 26018 cosq14ge0 26021 cosq34lt1 26036 cosord 26040 cos11 26042 recosf1o 26044 resinf1o 26045 efifo 26056 logrncn 26071 atanf 26385 atanneg 26412 efiatan 26417 atanlogaddlem 26418 atanlogadd 26419 atanlogsub 26421 efiatan2 26422 2efiatan 26423 tanatan 26424 areass 26464 dchrvmasumlem2 27001 dchrvmasumiflem1 27004 brbtwn2 28163 ax5seglem1 28186 ax5seglem2 28187 ax5seglem3 28189 ax5seglem5 28191 ax5seglem6 28192 ax5seglem9 28195 ax5seg 28196 axbtwnid 28197 axpaschlem 28198 axpasch 28199 axcontlem2 28223 axcontlem4 28225 axcontlem7 28228 pthistrl 28982 clwwlkbp 29238 sticl 31468 hstcl 31470 omndmnd 32222 slmdcmn 32350 orngring 32418 rrextnrg 32981 rrextdrg 32982 rossspw 33167 srossspw 33174 eulerpartlemd 33365 eulerpartlemf 33369 eulerpartlemgvv 33375 eulerpartlemgu 33376 eulerpartlemgh 33377 eulerpartlemgs2 33379 eulerpartlemn 33380 bnj564 33755 bnj1366 33840 bnj545 33906 bnj548 33908 bnj558 33913 bnj570 33916 bnj580 33924 bnj929 33947 bnj998 33968 bnj1006 33971 bnj1190 34019 bnj1523 34082 msrval 34529 mthmpps 34573 eqvrelrefrel 37468 atllat 38170 stoweidlem60 44776 fourierdlem111 44933 prproropf1o 46175 rngabl 46651 subrngrcl 46730 |
Copyright terms: Public domain | W3C validator |