![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 208 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1122 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-3an 1070 |
This theorem is referenced by: limord 6086 smores2 7792 smofvon2 7794 smofvon 7797 errel 8094 lincmb01cmp 12694 iccf1o 12695 elfznn0 12813 elfzouz 12855 ef01bndlem 15391 sin01bnd 15392 cos01bnd 15393 sin01gt0 15397 cos01gt0 15398 sin02gt0 15399 gzcn 16118 mresspw 16715 drsprs 17398 ipodrscl 17624 subgrcl 18062 pmtrfconj 18349 pgpprm 18473 slwprm 18489 efgsdmi 18610 efgsrel 18612 efgs1b 18614 efgsp1 18615 efgsres 18616 efgsresOLD 18617 efgsfo 18618 efgredlema 18619 efgredlemf 18620 efgredlemd 18623 efgredlemc 18624 efgredlem 18626 efgredlemOLD 18627 efgrelexlemb 18630 efgcpbllemb 18635 srgcmn 18975 ringgrp 19019 irredcl 19171 lmodgrp 19357 lssss 19424 phllvec 20469 obsrcl 20563 locfintop 21827 fclstop 22317 tmdmnd 22381 tgpgrp 22384 trgtgp 22473 tdrgtrg 22478 ust0 22525 ngpgrp 22905 elii1 23236 elii2 23237 icopnfcnv 23243 icopnfhmeo 23244 iccpnfhmeo 23246 xrhmeo 23247 oprpiece1res2 23253 phtpcer 23296 pcoval2 23317 pcoass 23325 clmlmod 23368 cphphl 23472 cphnlm 23473 cphsca 23480 bnnvc 23640 uc1pcl 24434 mon1pcl 24435 sinq12ge0 24791 cosq14ge0 24794 cosord 24811 cos11 24812 recosf1o 24814 resinf1o 24815 efifo 24826 logrncn 24841 atanf 25153 atanneg 25180 efiatan 25185 atanlogaddlem 25186 atanlogadd 25187 atanlogsub 25189 efiatan2 25190 2efiatan 25191 tanatan 25192 areass 25233 dchrvmasumlem2 25770 dchrvmasumiflem1 25773 brbtwn2 26388 ax5seglem1 26411 ax5seglem2 26412 ax5seglem3 26414 ax5seglem5 26416 ax5seglem6 26417 ax5seglem9 26420 ax5seg 26421 axbtwnid 26422 axpaschlem 26423 axpasch 26424 axcontlem2 26448 axcontlem4 26450 axcontlem7 26453 pthistrl 27208 clwwlkbp 27485 sticl 29767 hstcl 29769 omndmnd 30414 slmdcmn 30490 orngring 30543 elunitrn 30775 rrextnrg 30877 rrextdrg 30878 rossspw 31064 srossspw 31071 eulerpartlemd 31260 eulerpartlemf 31264 eulerpartlemgvv 31270 eulerpartlemgu 31271 eulerpartlemgh 31272 eulerpartlemgs2 31274 eulerpartlemn 31275 bnj564 31654 bnj1366 31740 bnj545 31805 bnj548 31807 bnj558 31812 bnj570 31815 bnj580 31823 bnj929 31846 bnj998 31866 bnj1006 31869 bnj1190 31916 bnj1523 31979 msrval 32275 mthmpps 32319 eqvrelrefrel 35256 atllat 35859 stoweidlem60 41755 fourierdlem111 41912 prproropf1o 43011 rngabl 43486 |
Copyright terms: Public domain | W3C validator |