Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1141 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: limord 6329 smores2 8194 smofvon2 8196 smofvon 8199 errel 8516 elunitrn 13208 lincmb01cmp 13236 iccf1o 13237 elfznn0 13358 elfzouz 13400 ef01bndlem 15902 sin01bnd 15903 cos01bnd 15904 sin01gt0 15908 cos01gt0 15909 sin02gt0 15910 gzcn 16642 mresspw 17310 drsprs 18030 ipodrscl 18265 subgrcl 18769 pmtrfconj 19083 pgpprm 19207 slwprm 19223 efgsdmi 19347 efgsrel 19349 efgs1b 19351 efgsp1 19352 efgsres 19353 efgsfo 19354 efgredlema 19355 efgredlemf 19356 efgredlemd 19359 efgredlemc 19360 efgredlem 19362 efgrelexlemb 19365 efgcpbllemb 19370 srgcmn 19753 ringgrp 19797 irredcl 19955 lmodgrp 20139 lssss 20207 phllvec 20843 obsrcl 20939 locfintop 22681 fclstop 23171 tmdmnd 23235 tgpgrp 23238 trgtgp 23328 tdrgtrg 23333 ust0 23380 ngpgrp 23764 elii1 24107 elii2 24108 icopnfcnv 24114 icopnfhmeo 24115 iccpnfhmeo 24117 xrhmeo 24118 oprpiece1res2 24124 phtpcer 24167 pcoval2 24188 pcoass 24196 clmlmod 24239 cphphl 24344 cphnlm 24345 cphsca 24352 bnnvc 24513 uc1pcl 25317 mon1pcl 25318 sinq12ge0 25674 cosq14ge0 25677 cosq34lt1 25692 cosord 25696 cos11 25698 recosf1o 25700 resinf1o 25701 efifo 25712 logrncn 25727 atanf 26039 atanneg 26066 efiatan 26071 atanlogaddlem 26072 atanlogadd 26073 atanlogsub 26075 efiatan2 26076 2efiatan 26077 tanatan 26078 areass 26118 dchrvmasumlem2 26655 dchrvmasumiflem1 26658 brbtwn2 27282 ax5seglem1 27305 ax5seglem2 27306 ax5seglem3 27308 ax5seglem5 27310 ax5seglem6 27311 ax5seglem9 27314 ax5seg 27315 axbtwnid 27316 axpaschlem 27317 axpasch 27318 axcontlem2 27342 axcontlem4 27344 axcontlem7 27347 pthistrl 28102 clwwlkbp 28358 sticl 30586 hstcl 30588 omndmnd 31339 slmdcmn 31467 orngring 31508 rrextnrg 31960 rrextdrg 31961 rossspw 32146 srossspw 32153 eulerpartlemd 32342 eulerpartlemf 32346 eulerpartlemgvv 32352 eulerpartlemgu 32353 eulerpartlemgh 32354 eulerpartlemgs2 32356 eulerpartlemn 32357 bnj564 32733 bnj1366 32818 bnj545 32884 bnj548 32886 bnj558 32891 bnj570 32894 bnj580 32902 bnj929 32925 bnj998 32946 bnj1006 32949 bnj1190 32997 bnj1523 33060 msrval 33509 mthmpps 33553 eqvrelrefrel 36718 atllat 37321 stoweidlem60 43608 fourierdlem111 43765 prproropf1o 44970 rngabl 45446 |
Copyright terms: Public domain | W3C validator |