![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1142 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: limord 6455 smores2 8410 smofvon2 8412 smofvon 8415 errel 8772 elunitrn 13527 lincmb01cmp 13555 iccf1o 13556 elfznn0 13677 elfzouz 13720 ef01bndlem 16232 sin01bnd 16233 cos01bnd 16234 sin01gt0 16238 cos01gt0 16239 sin02gt0 16240 gzcn 16979 mresspw 17650 drsprs 18373 ipodrscl 18608 subgrcl 19171 pmtrfconj 19508 pgpprm 19635 slwprm 19651 efgsdmi 19774 efgsrel 19776 efgs1b 19778 efgsp1 19779 efgsres 19780 efgsfo 19781 efgredlema 19782 efgredlemf 19783 efgredlemd 19786 efgredlemc 19787 efgredlem 19789 efgrelexlemb 19792 efgcpbllemb 19797 rngabl 20182 srgcmn 20216 ringgrp 20265 irredcl 20450 subrngrcl 20577 sdrgrcl 20812 lmodgrp 20887 lssss 20957 phllvec 21670 obsrcl 21766 locfintop 23550 fclstop 24040 tmdmnd 24104 tgpgrp 24107 trgtgp 24197 tdrgtrg 24202 ust0 24249 ngpgrp 24633 elii1 24983 elii2 24984 icopnfcnv 24992 icopnfhmeo 24993 iccpnfhmeo 24995 xrhmeo 24996 oprpiece1res2 25002 phtpcer 25046 pcoval2 25068 pcoass 25076 clmlmod 25119 cphphl 25224 cphnlm 25225 cphsca 25232 bnnvc 25393 uc1pcl 26203 mon1pcl 26204 sinq12ge0 26568 cosq14ge0 26571 cosq34lt1 26587 cosord 26591 cos11 26593 recosf1o 26595 resinf1o 26596 efifo 26607 logrncn 26622 atanf 26941 atanneg 26968 efiatan 26973 atanlogaddlem 26974 atanlogadd 26975 atanlogsub 26977 efiatan2 26978 2efiatan 26979 tanatan 26980 areass 27020 dchrvmasumlem2 27560 dchrvmasumiflem1 27563 brbtwn2 28938 ax5seglem1 28961 ax5seglem2 28962 ax5seglem3 28964 ax5seglem5 28966 ax5seglem6 28967 ax5seglem9 28970 ax5seg 28971 axbtwnid 28972 axpaschlem 28973 axpasch 28974 axcontlem2 28998 axcontlem4 29000 axcontlem7 29003 pthistrl 29761 clwwlkbp 30017 sticl 32247 hstcl 32249 omndmnd 33054 slmdcmn 33184 orngring 33295 rrextnrg 33947 rrextdrg 33948 rossspw 34133 srossspw 34140 eulerpartlemd 34331 eulerpartlemf 34335 eulerpartlemgvv 34341 eulerpartlemgu 34342 eulerpartlemgh 34343 eulerpartlemgs2 34345 eulerpartlemn 34346 bnj564 34720 bnj1366 34805 bnj545 34871 bnj548 34873 bnj558 34878 bnj570 34881 bnj580 34889 bnj929 34912 bnj998 34933 bnj1006 34936 bnj1190 34984 bnj1523 35047 msrval 35506 mthmpps 35550 eqvrelrefrel 38554 atllat 39256 stoweidlem60 45981 fourierdlem111 46138 prproropf1o 47381 |
Copyright terms: Public domain | W3C validator |