| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: limord 6393 smores2 8323 smofvon2 8325 smofvon 8328 errel 8680 elunitrn 13428 lincmb01cmp 13456 iccf1o 13457 elfznn0 13581 elfzouz 13624 ef01bndlem 16152 sin01bnd 16153 cos01bnd 16154 sin01gt0 16158 cos01gt0 16159 sin02gt0 16160 gzcn 16903 mresspw 17553 drsprs 18264 ipodrscl 18497 subgrcl 19063 pmtrfconj 19396 pgpprm 19523 slwprm 19539 efgsdmi 19662 efgsrel 19664 efgs1b 19666 efgsp1 19667 efgsres 19668 efgsfo 19669 efgredlema 19670 efgredlemf 19671 efgredlemd 19674 efgredlemc 19675 efgredlem 19677 efgrelexlemb 19680 efgcpbllemb 19685 rngabl 20064 srgcmn 20098 ringgrp 20147 irredcl 20333 subrngrcl 20460 sdrgrcl 20698 lmodgrp 20773 lssss 20842 phllvec 21538 obsrcl 21632 locfintop 23408 fclstop 23898 tmdmnd 23962 tgpgrp 23965 trgtgp 24055 tdrgtrg 24060 ust0 24107 ngpgrp 24487 elii1 24831 elii2 24832 icopnfcnv 24840 icopnfhmeo 24841 iccpnfhmeo 24843 xrhmeo 24844 oprpiece1res2 24850 phtpcer 24894 pcoval2 24916 pcoass 24924 clmlmod 24967 cphphl 25071 cphnlm 25072 cphsca 25079 bnnvc 25240 uc1pcl 26049 mon1pcl 26050 sinq12ge0 26417 cosq14ge0 26420 cosq34lt1 26436 cosord 26440 cos11 26442 recosf1o 26444 resinf1o 26445 efifo 26456 logrncn 26471 atanf 26790 atanneg 26817 efiatan 26822 atanlogaddlem 26823 atanlogadd 26824 atanlogsub 26826 efiatan2 26827 2efiatan 26828 tanatan 26829 areass 26869 dchrvmasumlem2 27409 dchrvmasumiflem1 27412 brbtwn2 28832 ax5seglem1 28855 ax5seglem2 28856 ax5seglem3 28858 ax5seglem5 28860 ax5seglem6 28861 ax5seglem9 28864 ax5seg 28865 axbtwnid 28866 axpaschlem 28867 axpasch 28868 axcontlem2 28892 axcontlem4 28894 axcontlem7 28897 pthistrl 29653 clwwlkbp 29914 sticl 32144 hstcl 32146 omndmnd 33018 slmdcmn 33158 orngring 33278 rrextnrg 33991 rrextdrg 33992 rossspw 34159 srossspw 34166 eulerpartlemd 34357 eulerpartlemf 34361 eulerpartlemgvv 34367 eulerpartlemgu 34368 eulerpartlemgh 34369 eulerpartlemgs2 34371 eulerpartlemn 34372 bnj564 34734 bnj1366 34819 bnj545 34885 bnj548 34887 bnj558 34892 bnj570 34895 bnj580 34903 bnj929 34926 bnj998 34947 bnj1006 34950 bnj1190 34998 bnj1523 35061 msrval 35525 mthmpps 35569 eqvrelrefrel 38589 atllat 39293 stoweidlem60 46058 fourierdlem111 46215 modmknepk 47363 prproropf1o 47508 gpgedgvtx1 48053 arweutermc 49519 |
| Copyright terms: Public domain | W3C validator |