| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: limord 6413 smores2 8366 smofvon2 8368 smofvon 8371 errel 8726 elunitrn 13482 lincmb01cmp 13510 iccf1o 13511 elfznn0 13635 elfzouz 13678 ef01bndlem 16200 sin01bnd 16201 cos01bnd 16202 sin01gt0 16206 cos01gt0 16207 sin02gt0 16208 gzcn 16950 mresspw 17602 drsprs 18313 ipodrscl 18546 subgrcl 19112 pmtrfconj 19445 pgpprm 19572 slwprm 19588 efgsdmi 19711 efgsrel 19713 efgs1b 19715 efgsp1 19716 efgsres 19717 efgsfo 19718 efgredlema 19719 efgredlemf 19720 efgredlemd 19723 efgredlemc 19724 efgredlem 19726 efgrelexlemb 19729 efgcpbllemb 19734 rngabl 20113 srgcmn 20147 ringgrp 20196 irredcl 20382 subrngrcl 20509 sdrgrcl 20747 lmodgrp 20822 lssss 20891 phllvec 21587 obsrcl 21681 locfintop 23457 fclstop 23947 tmdmnd 24011 tgpgrp 24014 trgtgp 24104 tdrgtrg 24109 ust0 24156 ngpgrp 24536 elii1 24880 elii2 24881 icopnfcnv 24889 icopnfhmeo 24890 iccpnfhmeo 24892 xrhmeo 24893 oprpiece1res2 24899 phtpcer 24943 pcoval2 24965 pcoass 24973 clmlmod 25016 cphphl 25121 cphnlm 25122 cphsca 25129 bnnvc 25290 uc1pcl 26099 mon1pcl 26100 sinq12ge0 26467 cosq14ge0 26470 cosq34lt1 26486 cosord 26490 cos11 26492 recosf1o 26494 resinf1o 26495 efifo 26506 logrncn 26521 atanf 26840 atanneg 26867 efiatan 26872 atanlogaddlem 26873 atanlogadd 26874 atanlogsub 26876 efiatan2 26877 2efiatan 26878 tanatan 26879 areass 26919 dchrvmasumlem2 27459 dchrvmasumiflem1 27462 brbtwn2 28830 ax5seglem1 28853 ax5seglem2 28854 ax5seglem3 28856 ax5seglem5 28858 ax5seglem6 28859 ax5seglem9 28862 ax5seg 28863 axbtwnid 28864 axpaschlem 28865 axpasch 28866 axcontlem2 28890 axcontlem4 28892 axcontlem7 28895 pthistrl 29651 clwwlkbp 29912 sticl 32142 hstcl 32144 omndmnd 33018 slmdcmn 33148 orngring 33268 rrextnrg 33978 rrextdrg 33979 rossspw 34146 srossspw 34153 eulerpartlemd 34344 eulerpartlemf 34348 eulerpartlemgvv 34354 eulerpartlemgu 34355 eulerpartlemgh 34356 eulerpartlemgs2 34358 eulerpartlemn 34359 bnj564 34721 bnj1366 34806 bnj545 34872 bnj548 34874 bnj558 34879 bnj570 34882 bnj580 34890 bnj929 34913 bnj998 34934 bnj1006 34937 bnj1190 34985 bnj1523 35048 msrval 35506 mthmpps 35550 eqvrelrefrel 38562 atllat 39264 stoweidlem60 46037 fourierdlem111 46194 prproropf1o 47469 gpgedgvtx1 48014 gpg3nbgrvtxlem 48017 arweutermc 49363 |
| Copyright terms: Public domain | W3C validator |