Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1140 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: limord 6310 smores2 8156 smofvon2 8158 smofvon 8161 errel 8465 elunitrn 13128 lincmb01cmp 13156 iccf1o 13157 elfznn0 13278 elfzouz 13320 ef01bndlem 15821 sin01bnd 15822 cos01bnd 15823 sin01gt0 15827 cos01gt0 15828 sin02gt0 15829 gzcn 16561 mresspw 17218 drsprs 17936 ipodrscl 18171 subgrcl 18675 pmtrfconj 18989 pgpprm 19113 slwprm 19129 efgsdmi 19253 efgsrel 19255 efgs1b 19257 efgsp1 19258 efgsres 19259 efgsfo 19260 efgredlema 19261 efgredlemf 19262 efgredlemd 19265 efgredlemc 19266 efgredlem 19268 efgrelexlemb 19271 efgcpbllemb 19276 srgcmn 19659 ringgrp 19703 irredcl 19861 lmodgrp 20045 lssss 20113 phllvec 20746 obsrcl 20840 locfintop 22580 fclstop 23070 tmdmnd 23134 tgpgrp 23137 trgtgp 23227 tdrgtrg 23232 ust0 23279 ngpgrp 23661 elii1 24004 elii2 24005 icopnfcnv 24011 icopnfhmeo 24012 iccpnfhmeo 24014 xrhmeo 24015 oprpiece1res2 24021 phtpcer 24064 pcoval2 24085 pcoass 24093 clmlmod 24136 cphphl 24240 cphnlm 24241 cphsca 24248 bnnvc 24409 uc1pcl 25213 mon1pcl 25214 sinq12ge0 25570 cosq14ge0 25573 cosq34lt1 25588 cosord 25592 cos11 25594 recosf1o 25596 resinf1o 25597 efifo 25608 logrncn 25623 atanf 25935 atanneg 25962 efiatan 25967 atanlogaddlem 25968 atanlogadd 25969 atanlogsub 25971 efiatan2 25972 2efiatan 25973 tanatan 25974 areass 26014 dchrvmasumlem2 26551 dchrvmasumiflem1 26554 brbtwn2 27176 ax5seglem1 27199 ax5seglem2 27200 ax5seglem3 27202 ax5seglem5 27204 ax5seglem6 27205 ax5seglem9 27208 ax5seg 27209 axbtwnid 27210 axpaschlem 27211 axpasch 27212 axcontlem2 27236 axcontlem4 27238 axcontlem7 27241 pthistrl 27994 clwwlkbp 28250 sticl 30478 hstcl 30480 omndmnd 31232 slmdcmn 31360 orngring 31401 rrextnrg 31851 rrextdrg 31852 rossspw 32037 srossspw 32044 eulerpartlemd 32233 eulerpartlemf 32237 eulerpartlemgvv 32243 eulerpartlemgu 32244 eulerpartlemgh 32245 eulerpartlemgs2 32247 eulerpartlemn 32248 bnj564 32624 bnj1366 32709 bnj545 32775 bnj548 32777 bnj558 32782 bnj570 32785 bnj580 32793 bnj929 32816 bnj998 32837 bnj1006 32840 bnj1190 32888 bnj1523 32951 msrval 33400 mthmpps 33444 eqvrelrefrel 36638 atllat 37241 stoweidlem60 43491 fourierdlem111 43648 prproropf1o 44847 rngabl 45323 |
Copyright terms: Public domain | W3C validator |