![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1141 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: limord 6445 smores2 8392 smofvon2 8394 smofvon 8397 errel 8752 elunitrn 13503 lincmb01cmp 13531 iccf1o 13532 elfznn0 13656 elfzouz 13699 ef01bndlem 16216 sin01bnd 16217 cos01bnd 16218 sin01gt0 16222 cos01gt0 16223 sin02gt0 16224 gzcn 16965 mresspw 17636 drsprs 18360 ipodrscl 18595 subgrcl 19161 pmtrfconj 19498 pgpprm 19625 slwprm 19641 efgsdmi 19764 efgsrel 19766 efgs1b 19768 efgsp1 19769 efgsres 19770 efgsfo 19771 efgredlema 19772 efgredlemf 19773 efgredlemd 19776 efgredlemc 19777 efgredlem 19779 efgrelexlemb 19782 efgcpbllemb 19787 rngabl 20172 srgcmn 20206 ringgrp 20255 irredcl 20440 subrngrcl 20567 sdrgrcl 20806 lmodgrp 20881 lssss 20951 phllvec 21664 obsrcl 21760 locfintop 23544 fclstop 24034 tmdmnd 24098 tgpgrp 24101 trgtgp 24191 tdrgtrg 24196 ust0 24243 ngpgrp 24627 elii1 24977 elii2 24978 icopnfcnv 24986 icopnfhmeo 24987 iccpnfhmeo 24989 xrhmeo 24990 oprpiece1res2 24996 phtpcer 25040 pcoval2 25062 pcoass 25070 clmlmod 25113 cphphl 25218 cphnlm 25219 cphsca 25226 bnnvc 25387 uc1pcl 26197 mon1pcl 26198 sinq12ge0 26564 cosq14ge0 26567 cosq34lt1 26583 cosord 26587 cos11 26589 recosf1o 26591 resinf1o 26592 efifo 26603 logrncn 26618 atanf 26937 atanneg 26964 efiatan 26969 atanlogaddlem 26970 atanlogadd 26971 atanlogsub 26973 efiatan2 26974 2efiatan 26975 tanatan 26976 areass 27016 dchrvmasumlem2 27556 dchrvmasumiflem1 27559 brbtwn2 28934 ax5seglem1 28957 ax5seglem2 28958 ax5seglem3 28960 ax5seglem5 28962 ax5seglem6 28963 ax5seglem9 28966 ax5seg 28967 axbtwnid 28968 axpaschlem 28969 axpasch 28970 axcontlem2 28994 axcontlem4 28996 axcontlem7 28999 pthistrl 29757 clwwlkbp 30013 sticl 32243 hstcl 32245 omndmnd 33063 slmdcmn 33193 orngring 33309 rrextnrg 33963 rrextdrg 33964 rossspw 34149 srossspw 34156 eulerpartlemd 34347 eulerpartlemf 34351 eulerpartlemgvv 34357 eulerpartlemgu 34358 eulerpartlemgh 34359 eulerpartlemgs2 34361 eulerpartlemn 34362 bnj564 34736 bnj1366 34821 bnj545 34887 bnj548 34889 bnj558 34894 bnj570 34897 bnj580 34905 bnj929 34928 bnj998 34949 bnj1006 34952 bnj1190 35000 bnj1523 35063 msrval 35522 mthmpps 35566 eqvrelrefrel 38579 atllat 39281 stoweidlem60 46015 fourierdlem111 46172 prproropf1o 47431 gpgedgvtx1 47954 gpg3nbgrvtxlem 47957 |
Copyright terms: Public domain | W3C validator |