| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: limord 6367 smores2 8274 smofvon2 8276 smofvon 8279 errel 8631 elunitrn 13367 lincmb01cmp 13395 iccf1o 13396 elfznn0 13520 elfzouz 13563 ef01bndlem 16093 sin01bnd 16094 cos01bnd 16095 sin01gt0 16099 cos01gt0 16100 sin02gt0 16101 gzcn 16844 mresspw 17494 drsprs 18209 ipodrscl 18444 subgrcl 19044 pmtrfconj 19379 pgpprm 19506 slwprm 19522 efgsdmi 19645 efgsrel 19647 efgs1b 19649 efgsp1 19650 efgsres 19651 efgsfo 19652 efgredlema 19653 efgredlemf 19654 efgredlemd 19657 efgredlemc 19658 efgredlem 19660 efgrelexlemb 19663 efgcpbllemb 19668 omndmnd 20039 rngabl 20074 srgcmn 20108 ringgrp 20157 irredcl 20343 subrngrcl 20467 sdrgrcl 20705 orngring 20778 lmodgrp 20801 lssss 20870 phllvec 21567 obsrcl 21661 locfintop 23437 fclstop 23927 tmdmnd 23991 tgpgrp 23994 trgtgp 24084 tdrgtrg 24089 ust0 24136 ngpgrp 24515 elii1 24859 elii2 24860 icopnfcnv 24868 icopnfhmeo 24869 iccpnfhmeo 24871 xrhmeo 24872 oprpiece1res2 24878 phtpcer 24922 pcoval2 24944 pcoass 24952 clmlmod 24995 cphphl 25099 cphnlm 25100 cphsca 25107 bnnvc 25268 uc1pcl 26077 mon1pcl 26078 sinq12ge0 26445 cosq14ge0 26448 cosq34lt1 26464 cosord 26468 cos11 26470 recosf1o 26472 resinf1o 26473 efifo 26484 logrncn 26499 atanf 26818 atanneg 26845 efiatan 26850 atanlogaddlem 26851 atanlogadd 26852 atanlogsub 26854 efiatan2 26855 2efiatan 26856 tanatan 26857 areass 26897 dchrvmasumlem2 27437 dchrvmasumiflem1 27440 brbtwn2 28884 ax5seglem1 28907 ax5seglem2 28908 ax5seglem3 28910 ax5seglem5 28912 ax5seglem6 28913 ax5seglem9 28916 ax5seg 28917 axbtwnid 28918 axpaschlem 28919 axpasch 28920 axcontlem2 28944 axcontlem4 28946 axcontlem7 28949 pthistrl 29702 clwwlkbp 29963 sticl 32193 hstcl 32195 slmdcmn 33172 rrextnrg 34012 rrextdrg 34013 rossspw 34180 srossspw 34187 eulerpartlemd 34377 eulerpartlemf 34381 eulerpartlemgvv 34387 eulerpartlemgu 34388 eulerpartlemgh 34389 eulerpartlemgs2 34391 eulerpartlemn 34392 bnj564 34754 bnj1366 34839 bnj545 34905 bnj548 34907 bnj558 34912 bnj570 34915 bnj580 34923 bnj929 34946 bnj998 34967 bnj1006 34970 bnj1190 35018 bnj1523 35081 msrval 35580 mthmpps 35624 eqvrelrefrel 38641 atllat 39345 stoweidlem60 46104 fourierdlem111 46261 modmknepk 47399 prproropf1o 47544 gpgedgvtx1 48099 arweutermc 49568 |
| Copyright terms: Public domain | W3C validator |