![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1143 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: limord 6425 smores2 8354 smofvon2 8356 smofvon 8359 errel 8712 elunitrn 13444 lincmb01cmp 13472 iccf1o 13473 elfznn0 13594 elfzouz 13636 ef01bndlem 16127 sin01bnd 16128 cos01bnd 16129 sin01gt0 16133 cos01gt0 16134 sin02gt0 16135 gzcn 16865 mresspw 17536 drsprs 18256 ipodrscl 18491 subgrcl 19011 pmtrfconj 19334 pgpprm 19461 slwprm 19477 efgsdmi 19600 efgsrel 19602 efgs1b 19604 efgsp1 19605 efgsres 19606 efgsfo 19607 efgredlema 19608 efgredlemf 19609 efgredlemd 19612 efgredlemc 19613 efgredlem 19615 efgrelexlemb 19618 efgcpbllemb 19623 srgcmn 20012 ringgrp 20061 irredcl 20238 sdrgrcl 20405 lmodgrp 20478 lssss 20547 phllvec 21182 obsrcl 21278 locfintop 23025 fclstop 23515 tmdmnd 23579 tgpgrp 23582 trgtgp 23672 tdrgtrg 23677 ust0 23724 ngpgrp 24108 elii1 24451 elii2 24452 icopnfcnv 24458 icopnfhmeo 24459 iccpnfhmeo 24461 xrhmeo 24462 oprpiece1res2 24468 phtpcer 24511 pcoval2 24532 pcoass 24540 clmlmod 24583 cphphl 24688 cphnlm 24689 cphsca 24696 bnnvc 24857 uc1pcl 25661 mon1pcl 25662 sinq12ge0 26018 cosq14ge0 26021 cosq34lt1 26036 cosord 26040 cos11 26042 recosf1o 26044 resinf1o 26045 efifo 26056 logrncn 26071 atanf 26385 atanneg 26412 efiatan 26417 atanlogaddlem 26418 atanlogadd 26419 atanlogsub 26421 efiatan2 26422 2efiatan 26423 tanatan 26424 areass 26464 dchrvmasumlem2 27001 dchrvmasumiflem1 27004 brbtwn2 28194 ax5seglem1 28217 ax5seglem2 28218 ax5seglem3 28220 ax5seglem5 28222 ax5seglem6 28223 ax5seglem9 28226 ax5seg 28227 axbtwnid 28228 axpaschlem 28229 axpasch 28230 axcontlem2 28254 axcontlem4 28256 axcontlem7 28259 pthistrl 29013 clwwlkbp 29269 sticl 31499 hstcl 31501 omndmnd 32253 slmdcmn 32381 orngring 32449 rrextnrg 33012 rrextdrg 33013 rossspw 33198 srossspw 33205 eulerpartlemd 33396 eulerpartlemf 33400 eulerpartlemgvv 33406 eulerpartlemgu 33407 eulerpartlemgh 33408 eulerpartlemgs2 33410 eulerpartlemn 33411 bnj564 33786 bnj1366 33871 bnj545 33937 bnj548 33939 bnj558 33944 bnj570 33947 bnj580 33955 bnj929 33978 bnj998 33999 bnj1006 34002 bnj1190 34050 bnj1523 34113 msrval 34560 mthmpps 34604 eqvrelrefrel 37516 atllat 38218 stoweidlem60 44824 fourierdlem111 44981 prproropf1o 46223 rngabl 46699 subrngrcl 46778 |
Copyright terms: Public domain | W3C validator |