| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1bi | Structured version Visualization version GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: limord 6396 smores2 8326 smofvon2 8328 smofvon 8331 errel 8683 elunitrn 13435 lincmb01cmp 13463 iccf1o 13464 elfznn0 13588 elfzouz 13631 ef01bndlem 16159 sin01bnd 16160 cos01bnd 16161 sin01gt0 16165 cos01gt0 16166 sin02gt0 16167 gzcn 16910 mresspw 17560 drsprs 18271 ipodrscl 18504 subgrcl 19070 pmtrfconj 19403 pgpprm 19530 slwprm 19546 efgsdmi 19669 efgsrel 19671 efgs1b 19673 efgsp1 19674 efgsres 19675 efgsfo 19676 efgredlema 19677 efgredlemf 19678 efgredlemd 19681 efgredlemc 19682 efgredlem 19684 efgrelexlemb 19687 efgcpbllemb 19692 rngabl 20071 srgcmn 20105 ringgrp 20154 irredcl 20340 subrngrcl 20467 sdrgrcl 20705 lmodgrp 20780 lssss 20849 phllvec 21545 obsrcl 21639 locfintop 23415 fclstop 23905 tmdmnd 23969 tgpgrp 23972 trgtgp 24062 tdrgtrg 24067 ust0 24114 ngpgrp 24494 elii1 24838 elii2 24839 icopnfcnv 24847 icopnfhmeo 24848 iccpnfhmeo 24850 xrhmeo 24851 oprpiece1res2 24857 phtpcer 24901 pcoval2 24923 pcoass 24931 clmlmod 24974 cphphl 25078 cphnlm 25079 cphsca 25086 bnnvc 25247 uc1pcl 26056 mon1pcl 26057 sinq12ge0 26424 cosq14ge0 26427 cosq34lt1 26443 cosord 26447 cos11 26449 recosf1o 26451 resinf1o 26452 efifo 26463 logrncn 26478 atanf 26797 atanneg 26824 efiatan 26829 atanlogaddlem 26830 atanlogadd 26831 atanlogsub 26833 efiatan2 26834 2efiatan 26835 tanatan 26836 areass 26876 dchrvmasumlem2 27416 dchrvmasumiflem1 27419 brbtwn2 28839 ax5seglem1 28862 ax5seglem2 28863 ax5seglem3 28865 ax5seglem5 28867 ax5seglem6 28868 ax5seglem9 28871 ax5seg 28872 axbtwnid 28873 axpaschlem 28874 axpasch 28875 axcontlem2 28899 axcontlem4 28901 axcontlem7 28904 pthistrl 29660 clwwlkbp 29921 sticl 32151 hstcl 32153 omndmnd 33025 slmdcmn 33165 orngring 33285 rrextnrg 33998 rrextdrg 33999 rossspw 34166 srossspw 34173 eulerpartlemd 34364 eulerpartlemf 34368 eulerpartlemgvv 34374 eulerpartlemgu 34375 eulerpartlemgh 34376 eulerpartlemgs2 34378 eulerpartlemn 34379 bnj564 34741 bnj1366 34826 bnj545 34892 bnj548 34894 bnj558 34899 bnj570 34902 bnj580 34910 bnj929 34933 bnj998 34954 bnj1006 34957 bnj1190 35005 bnj1523 35068 msrval 35532 mthmpps 35576 eqvrelrefrel 38596 atllat 39300 stoweidlem60 46065 fourierdlem111 46222 modmknepk 47367 prproropf1o 47512 gpgedgvtx1 48057 arweutermc 49523 |
| Copyright terms: Public domain | W3C validator |