Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelrel | Structured version Visualization version GIF version |
Description: An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvrelrel | ⊢ ( EqvRel 𝑅 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfeqvrel2 36258 | . 2 ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | |
2 | 1 | simprbi 501 | 1 ⊢ ( EqvRel 𝑅 → Rel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ⊆ wss 3859 I cid 5430 ◡ccnv 5524 dom cdm 5525 ↾ cres 5527 ∘ ccom 5529 Rel wrel 5530 EqvRel weqvrel 35903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-refrel 36185 df-symrel 36213 df-trrel 36243 df-eqvrel 36253 |
This theorem is referenced by: eqvrelsym 36273 eqvreltr 36275 eqvrelref 36278 eqvrelth 36279 eqvrelcl 36280 erim2 36344 |
Copyright terms: Public domain | W3C validator |