![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelrel | Structured version Visualization version GIF version |
Description: An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvrelrel | ⊢ ( EqvRel 𝑅 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfeqvrel2 38301 | . 2 ⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | |
2 | 1 | simprbi 495 | 1 ⊢ ( EqvRel 𝑅 → Rel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ⊆ wss 3946 I cid 5571 ◡ccnv 5673 dom cdm 5674 ↾ cres 5676 ∘ ccom 5678 Rel wrel 5679 EqvRel weqvrel 37906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-refrel 38223 df-symrel 38255 df-trrel 38285 df-eqvrel 38296 |
This theorem is referenced by: eqvrelsym 38316 eqvreltr 38318 eqvrelref 38321 eqvrelth 38322 eqvrelcl 38323 erimeq2 38389 |
Copyright terms: Public domain | W3C validator |