Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelsym Structured version   Visualization version   GIF version

Theorem eqvrelsym 37470
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelsym.1 (𝜑 → EqvRel 𝑅)
eqvrelsym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
eqvrelsym (𝜑𝐵𝑅𝐴)

Proof of Theorem eqvrelsym
StepHypRef Expression
1 eqvrelsym.2 . . 3 (𝜑𝐴𝑅𝐵)
2 eqvrelsym.1 . . . 4 (𝜑 → EqvRel 𝑅)
3 eqvrelrel 37462 . . . 4 ( EqvRel 𝑅 → Rel 𝑅)
4 relbrcnvg 6104 . . . 4 (Rel 𝑅 → (𝐵𝑅𝐴𝐴𝑅𝐵))
52, 3, 43syl 18 . . 3 (𝜑 → (𝐵𝑅𝐴𝐴𝑅𝐵))
61, 5mpbird 256 . 2 (𝜑𝐵𝑅𝐴)
7 eqvrelsymrel 37464 . . . 4 ( EqvRel 𝑅 → SymRel 𝑅)
8 dfsymrel2 37414 . . . . 5 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
98simplbi 498 . . . 4 ( SymRel 𝑅𝑅𝑅)
102, 7, 93syl 18 . . 3 (𝜑𝑅𝑅)
1110ssbrd 5191 . 2 (𝜑 → (𝐵𝑅𝐴𝐵𝑅𝐴))
126, 11mpd 15 1 (𝜑𝐵𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wss 3948   class class class wbr 5148  ccnv 5675  Rel wrel 5681   SymRel wsymrel 37050   EqvRel weqvrel 37055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-refrel 37377  df-symrel 37409  df-trrel 37439  df-eqvrel 37450
This theorem is referenced by:  eqvrelsymb  37471  eqvreltr4d  37474  eqvrelth  37476
  Copyright terms: Public domain W3C validator