Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelsym Structured version   Visualization version   GIF version

Theorem eqvrelsym 38561
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelsym.1 (𝜑 → EqvRel 𝑅)
eqvrelsym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
eqvrelsym (𝜑𝐵𝑅𝐴)

Proof of Theorem eqvrelsym
StepHypRef Expression
1 eqvrelsym.2 . . 3 (𝜑𝐴𝑅𝐵)
2 eqvrelsym.1 . . . 4 (𝜑 → EqvRel 𝑅)
3 eqvrelrel 38553 . . . 4 ( EqvRel 𝑅 → Rel 𝑅)
4 relbrcnvg 6135 . . . 4 (Rel 𝑅 → (𝐵𝑅𝐴𝐴𝑅𝐵))
52, 3, 43syl 18 . . 3 (𝜑 → (𝐵𝑅𝐴𝐴𝑅𝐵))
61, 5mpbird 257 . 2 (𝜑𝐵𝑅𝐴)
7 eqvrelsymrel 38555 . . . 4 ( EqvRel 𝑅 → SymRel 𝑅)
8 dfsymrel2 38505 . . . . 5 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
98simplbi 497 . . . 4 ( SymRel 𝑅𝑅𝑅)
102, 7, 93syl 18 . . 3 (𝜑𝑅𝑅)
1110ssbrd 5209 . 2 (𝜑 → (𝐵𝑅𝐴𝐵𝑅𝐴))
126, 11mpd 15 1 (𝜑𝐵𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wss 3976   class class class wbr 5166  ccnv 5699  Rel wrel 5705   SymRel wsymrel 38147   EqvRel weqvrel 38152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-refrel 38468  df-symrel 38500  df-trrel 38530  df-eqvrel 38541
This theorem is referenced by:  eqvrelsymb  38562  eqvreltr4d  38565  eqvrelth  38567
  Copyright terms: Public domain W3C validator