| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelsym | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| Ref | Expression |
|---|---|
| eqvrelsym.1 | ⊢ (𝜑 → EqvRel 𝑅) |
| eqvrelsym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| eqvrelsym | ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelsym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | eqvrelsym.1 | . . . 4 ⊢ (𝜑 → EqvRel 𝑅) | |
| 3 | eqvrelrel 38588 | . . . 4 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
| 4 | relbrcnvg 6076 | . . . 4 ⊢ (Rel 𝑅 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
| 6 | 1, 5 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵◡𝑅𝐴) |
| 7 | eqvrelsymrel 38590 | . . . 4 ⊢ ( EqvRel 𝑅 → SymRel 𝑅) | |
| 8 | dfsymrel2 38540 | . . . . 5 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 9 | 8 | simplbi 497 | . . . 4 ⊢ ( SymRel 𝑅 → ◡𝑅 ⊆ 𝑅) |
| 10 | 2, 7, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝑅 ⊆ 𝑅) |
| 11 | 10 | ssbrd 5150 | . 2 ⊢ (𝜑 → (𝐵◡𝑅𝐴 → 𝐵𝑅𝐴)) |
| 12 | 6, 11 | mpd 15 | 1 ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ⊆ wss 3914 class class class wbr 5107 ◡ccnv 5637 Rel wrel 5643 SymRel wsymrel 38181 EqvRel weqvrel 38186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-refrel 38503 df-symrel 38535 df-trrel 38565 df-eqvrel 38576 |
| This theorem is referenced by: eqvrelsymb 38597 eqvreltr4d 38600 eqvrelth 38602 |
| Copyright terms: Public domain | W3C validator |