| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelsym | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| Ref | Expression |
|---|---|
| eqvrelsym.1 | ⊢ (𝜑 → EqvRel 𝑅) |
| eqvrelsym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| eqvrelsym | ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelsym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | eqvrelsym.1 | . . . 4 ⊢ (𝜑 → EqvRel 𝑅) | |
| 3 | eqvrelrel 38703 | . . . 4 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
| 4 | relbrcnvg 6053 | . . . 4 ⊢ (Rel 𝑅 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
| 6 | 1, 5 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵◡𝑅𝐴) |
| 7 | eqvrelsymrel 38705 | . . . 4 ⊢ ( EqvRel 𝑅 → SymRel 𝑅) | |
| 8 | dfsymrel2 38655 | . . . . 5 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 9 | 8 | simplbi 497 | . . . 4 ⊢ ( SymRel 𝑅 → ◡𝑅 ⊆ 𝑅) |
| 10 | 2, 7, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝑅 ⊆ 𝑅) |
| 11 | 10 | ssbrd 5132 | . 2 ⊢ (𝜑 → (𝐵◡𝑅𝐴 → 𝐵𝑅𝐴)) |
| 12 | 6, 11 | mpd 15 | 1 ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ⊆ wss 3897 class class class wbr 5089 ◡ccnv 5613 Rel wrel 5619 SymRel wsymrel 38244 EqvRel weqvrel 38249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-refrel 38614 df-symrel 38646 df-trrel 38680 df-eqvrel 38691 |
| This theorem is referenced by: eqvrelsymb 38712 eqvreltr4d 38715 eqvrelth 38717 |
| Copyright terms: Public domain | W3C validator |