Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelsym Structured version   Visualization version   GIF version

Theorem eqvrelsym 38569
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelsym.1 (𝜑 → EqvRel 𝑅)
eqvrelsym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
eqvrelsym (𝜑𝐵𝑅𝐴)

Proof of Theorem eqvrelsym
StepHypRef Expression
1 eqvrelsym.2 . . 3 (𝜑𝐴𝑅𝐵)
2 eqvrelsym.1 . . . 4 (𝜑 → EqvRel 𝑅)
3 eqvrelrel 38561 . . . 4 ( EqvRel 𝑅 → Rel 𝑅)
4 relbrcnvg 6065 . . . 4 (Rel 𝑅 → (𝐵𝑅𝐴𝐴𝑅𝐵))
52, 3, 43syl 18 . . 3 (𝜑 → (𝐵𝑅𝐴𝐴𝑅𝐵))
61, 5mpbird 257 . 2 (𝜑𝐵𝑅𝐴)
7 eqvrelsymrel 38563 . . . 4 ( EqvRel 𝑅 → SymRel 𝑅)
8 dfsymrel2 38513 . . . . 5 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
98simplbi 497 . . . 4 ( SymRel 𝑅𝑅𝑅)
102, 7, 93syl 18 . . 3 (𝜑𝑅𝑅)
1110ssbrd 5145 . 2 (𝜑 → (𝐵𝑅𝐴𝐵𝑅𝐴))
126, 11mpd 15 1 (𝜑𝐵𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wss 3911   class class class wbr 5102  ccnv 5630  Rel wrel 5636   SymRel wsymrel 38154   EqvRel weqvrel 38159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-refrel 38476  df-symrel 38508  df-trrel 38538  df-eqvrel 38549
This theorem is referenced by:  eqvrelsymb  38570  eqvreltr4d  38573  eqvrelth  38575
  Copyright terms: Public domain W3C validator