| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelsym | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| Ref | Expression |
|---|---|
| eqvrelsym.1 | ⊢ (𝜑 → EqvRel 𝑅) |
| eqvrelsym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| eqvrelsym | ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelsym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | eqvrelsym.1 | . . . 4 ⊢ (𝜑 → EqvRel 𝑅) | |
| 3 | eqvrelrel 38620 | . . . 4 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
| 4 | relbrcnvg 6097 | . . . 4 ⊢ (Rel 𝑅 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
| 6 | 1, 5 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵◡𝑅𝐴) |
| 7 | eqvrelsymrel 38622 | . . . 4 ⊢ ( EqvRel 𝑅 → SymRel 𝑅) | |
| 8 | dfsymrel2 38572 | . . . . 5 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 9 | 8 | simplbi 497 | . . . 4 ⊢ ( SymRel 𝑅 → ◡𝑅 ⊆ 𝑅) |
| 10 | 2, 7, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡𝑅 ⊆ 𝑅) |
| 11 | 10 | ssbrd 5167 | . 2 ⊢ (𝜑 → (𝐵◡𝑅𝐴 → 𝐵𝑅𝐴)) |
| 12 | 6, 11 | mpd 15 | 1 ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ⊆ wss 3931 class class class wbr 5124 ◡ccnv 5658 Rel wrel 5664 SymRel wsymrel 38216 EqvRel weqvrel 38221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-refrel 38535 df-symrel 38567 df-trrel 38597 df-eqvrel 38608 |
| This theorem is referenced by: eqvrelsymb 38629 eqvreltr4d 38632 eqvrelth 38634 |
| Copyright terms: Public domain | W3C validator |