MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-an Structured version   Visualization version   GIF version

Theorem ex-an 30225
Description: Example for df-an 396. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-an (2 = 2 ∧ 3 = 3)

Proof of Theorem ex-an
StepHypRef Expression
1 eqid 2728 . 2 2 = 2
2 eqid 2728 . 2 3 = 3
31, 2pm3.2i 470 1 (2 = 2 ∧ 3 = 3)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  2c2 12291  3c3 12292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-cleq 2720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator