MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-or Structured version   Visualization version   GIF version

Theorem ex-or 28350
Description: Example for df-or 847. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-or (2 = 3 ∨ 4 = 4)

Proof of Theorem ex-or
StepHypRef Expression
1 eqid 2738 . 2 4 = 4
21olci 865 1 (2 = 3 ∨ 4 = 4)
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1542  2c2 11764  3c3 11765  4c4 11766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-9 2123  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ex 1787  df-cleq 2730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator