MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-or Structured version   Visualization version   GIF version

Theorem ex-or 29671
Description: Example for df-or 846. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-or (2 = 3 ∨ 4 = 4)

Proof of Theorem ex-or
StepHypRef Expression
1 eqid 2732 . 2 4 = 4
21olci 864 1 (2 = 3 ∨ 4 = 4)
Colors of variables: wff setvar class
Syntax hints:  wo 845   = wceq 1541  2c2 12266  3c3 12267  4c4 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ex 1782  df-cleq 2724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator