![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-or | Structured version Visualization version GIF version |
Description: Example for df-or 848. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
ex-or | ⊢ (2 = 3 ∨ 4 = 4) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ 4 = 4 | |
2 | 1 | olci 866 | 1 ⊢ (2 = 3 ∨ 4 = 4) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 847 = wceq 1537 2c2 12319 3c3 12320 4c4 12321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |