MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-or Structured version   Visualization version   GIF version

Theorem ex-or 27972
Description: Example for df-or 834. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-or (2 = 3 ∨ 4 = 4)

Proof of Theorem ex-or
StepHypRef Expression
1 eqid 2775 . 2 4 = 4
21olci 852 1 (2 = 3 ∨ 4 = 4)
Colors of variables: wff setvar class
Syntax hints:  wo 833   = wceq 1507  2c2 11492  3c3 11493  4c4 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-9 2057  ax-ext 2747
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ex 1743  df-cleq 2768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator