MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-dif Structured version   Visualization version   GIF version

Theorem ex-dif 30398
Description: Example for df-dif 3905. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-dif ({1, 3} ∖ {1, 8}) = {3}

Proof of Theorem ex-dif
StepHypRef Expression
1 df-pr 4579 . . 3 {1, 3} = ({1} ∪ {3})
21difeq1i 4072 . 2 ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8})
3 difundir 4241 . 2 (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8}))
4 snsspr1 4766 . . . . 5 {1} ⊆ {1, 8}
5 ssdif0 4316 . . . . 5 ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅)
64, 5mpbi 230 . . . 4 ({1} ∖ {1, 8}) = ∅
7 incom 4159 . . . . . . 7 ({3} ∩ {1, 8}) = ({1, 8} ∩ {3})
8 1re 11109 . . . . . . . . . 10 1 ∈ ℝ
9 1lt3 12290 . . . . . . . . . 10 1 < 3
108, 9gtneii 11222 . . . . . . . . 9 3 ≠ 1
11 3re 12202 . . . . . . . . . 10 3 ∈ ℝ
12 3lt8 12313 . . . . . . . . . 10 3 < 8
1311, 12ltneii 11223 . . . . . . . . 9 3 ≠ 8
1410, 13nelpri 4608 . . . . . . . 8 ¬ 3 ∈ {1, 8}
15 disjsn 4664 . . . . . . . 8 (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8})
1614, 15mpbir 231 . . . . . . 7 ({1, 8} ∩ {3}) = ∅
177, 16eqtri 2754 . . . . . 6 ({3} ∩ {1, 8}) = ∅
18 disj3 4404 . . . . . 6 (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8}))
1917, 18mpbi 230 . . . . 5 {3} = ({3} ∖ {1, 8})
2019eqcomi 2740 . . . 4 ({3} ∖ {1, 8}) = {3}
216, 20uneq12i 4116 . . 3 (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3})
22 uncom 4108 . . 3 (∅ ∪ {3}) = ({3} ∪ ∅)
23 un0 4344 . . 3 ({3} ∪ ∅) = {3}
2421, 22, 233eqtri 2758 . 2 (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3}
252, 3, 243eqtri 2758 1 ({1, 3} ∖ {1, 8}) = {3}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283  {csn 4576  {cpr 4578  1c1 11004  3c3 12178  8c8 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator