Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-dif | Structured version Visualization version GIF version |
Description: Example for df-dif 3900. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-dif | ⊢ ({1, 3} ∖ {1, 8}) = {3} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4574 | . . 3 ⊢ {1, 3} = ({1} ∪ {3}) | |
2 | 1 | difeq1i 4064 | . 2 ⊢ ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8}) |
3 | difundir 4225 | . 2 ⊢ (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) | |
4 | snsspr1 4759 | . . . . 5 ⊢ {1} ⊆ {1, 8} | |
5 | ssdif0 4308 | . . . . 5 ⊢ ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅) | |
6 | 4, 5 | mpbi 229 | . . . 4 ⊢ ({1} ∖ {1, 8}) = ∅ |
7 | incom 4146 | . . . . . . 7 ⊢ ({3} ∩ {1, 8}) = ({1, 8} ∩ {3}) | |
8 | 1re 11048 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
9 | 1lt3 12219 | . . . . . . . . . 10 ⊢ 1 < 3 | |
10 | 8, 9 | gtneii 11160 | . . . . . . . . 9 ⊢ 3 ≠ 1 |
11 | 3re 12126 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
12 | 3lt8 12242 | . . . . . . . . . 10 ⊢ 3 < 8 | |
13 | 11, 12 | ltneii 11161 | . . . . . . . . 9 ⊢ 3 ≠ 8 |
14 | 10, 13 | nelpri 4600 | . . . . . . . 8 ⊢ ¬ 3 ∈ {1, 8} |
15 | disjsn 4657 | . . . . . . . 8 ⊢ (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8}) | |
16 | 14, 15 | mpbir 230 | . . . . . . 7 ⊢ ({1, 8} ∩ {3}) = ∅ |
17 | 7, 16 | eqtri 2765 | . . . . . 6 ⊢ ({3} ∩ {1, 8}) = ∅ |
18 | disj3 4398 | . . . . . 6 ⊢ (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8})) | |
19 | 17, 18 | mpbi 229 | . . . . 5 ⊢ {3} = ({3} ∖ {1, 8}) |
20 | 19 | eqcomi 2746 | . . . 4 ⊢ ({3} ∖ {1, 8}) = {3} |
21 | 6, 20 | uneq12i 4106 | . . 3 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3}) |
22 | uncom 4098 | . . 3 ⊢ (∅ ∪ {3}) = ({3} ∪ ∅) | |
23 | un0 4335 | . . 3 ⊢ ({3} ∪ ∅) = {3} | |
24 | 21, 22, 23 | 3eqtri 2769 | . 2 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3} |
25 | 2, 3, 24 | 3eqtri 2769 | 1 ⊢ ({1, 3} ∖ {1, 8}) = {3} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∅c0 4267 {csn 4571 {cpr 4573 1c1 10945 3c3 12102 8c8 12107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |