![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-dif | Structured version Visualization version GIF version |
Description: Example for df-dif 3949. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-dif | ⊢ ({1, 3} ∖ {1, 8}) = {3} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4626 | . . 3 ⊢ {1, 3} = ({1} ∪ {3}) | |
2 | 1 | difeq1i 4114 | . 2 ⊢ ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8}) |
3 | difundir 4279 | . 2 ⊢ (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) | |
4 | snsspr1 4813 | . . . . 5 ⊢ {1} ⊆ {1, 8} | |
5 | ssdif0 4359 | . . . . 5 ⊢ ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅) | |
6 | 4, 5 | mpbi 229 | . . . 4 ⊢ ({1} ∖ {1, 8}) = ∅ |
7 | incom 4199 | . . . . . . 7 ⊢ ({3} ∩ {1, 8}) = ({1, 8} ∩ {3}) | |
8 | 1re 11255 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
9 | 1lt3 12431 | . . . . . . . . . 10 ⊢ 1 < 3 | |
10 | 8, 9 | gtneii 11367 | . . . . . . . . 9 ⊢ 3 ≠ 1 |
11 | 3re 12338 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
12 | 3lt8 12454 | . . . . . . . . . 10 ⊢ 3 < 8 | |
13 | 11, 12 | ltneii 11368 | . . . . . . . . 9 ⊢ 3 ≠ 8 |
14 | 10, 13 | nelpri 4652 | . . . . . . . 8 ⊢ ¬ 3 ∈ {1, 8} |
15 | disjsn 4710 | . . . . . . . 8 ⊢ (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8}) | |
16 | 14, 15 | mpbir 230 | . . . . . . 7 ⊢ ({1, 8} ∩ {3}) = ∅ |
17 | 7, 16 | eqtri 2754 | . . . . . 6 ⊢ ({3} ∩ {1, 8}) = ∅ |
18 | disj3 4448 | . . . . . 6 ⊢ (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8})) | |
19 | 17, 18 | mpbi 229 | . . . . 5 ⊢ {3} = ({3} ∖ {1, 8}) |
20 | 19 | eqcomi 2735 | . . . 4 ⊢ ({3} ∖ {1, 8}) = {3} |
21 | 6, 20 | uneq12i 4158 | . . 3 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3}) |
22 | uncom 4150 | . . 3 ⊢ (∅ ∪ {3}) = ({3} ∪ ∅) | |
23 | un0 4388 | . . 3 ⊢ ({3} ∪ ∅) = {3} | |
24 | 21, 22, 23 | 3eqtri 2758 | . 2 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3} |
25 | 2, 3, 24 | 3eqtri 2758 | 1 ⊢ ({1, 3} ∖ {1, 8}) = {3} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 ∖ cdif 3943 ∪ cun 3944 ∩ cin 3945 ⊆ wss 3946 ∅c0 4322 {csn 4623 {cpr 4625 1c1 11150 3c3 12314 8c8 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |