Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-dif | Structured version Visualization version GIF version |
Description: Example for df-dif 3895. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-dif | ⊢ ({1, 3} ∖ {1, 8}) = {3} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4568 | . . 3 ⊢ {1, 3} = ({1} ∪ {3}) | |
2 | 1 | difeq1i 4059 | . 2 ⊢ ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8}) |
3 | difundir 4220 | . 2 ⊢ (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) | |
4 | snsspr1 4753 | . . . . 5 ⊢ {1} ⊆ {1, 8} | |
5 | ssdif0 4303 | . . . . 5 ⊢ ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅) | |
6 | 4, 5 | mpbi 229 | . . . 4 ⊢ ({1} ∖ {1, 8}) = ∅ |
7 | incom 4141 | . . . . . . 7 ⊢ ({3} ∩ {1, 8}) = ({1, 8} ∩ {3}) | |
8 | 1re 11025 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
9 | 1lt3 12196 | . . . . . . . . . 10 ⊢ 1 < 3 | |
10 | 8, 9 | gtneii 11137 | . . . . . . . . 9 ⊢ 3 ≠ 1 |
11 | 3re 12103 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
12 | 3lt8 12219 | . . . . . . . . . 10 ⊢ 3 < 8 | |
13 | 11, 12 | ltneii 11138 | . . . . . . . . 9 ⊢ 3 ≠ 8 |
14 | 10, 13 | nelpri 4594 | . . . . . . . 8 ⊢ ¬ 3 ∈ {1, 8} |
15 | disjsn 4651 | . . . . . . . 8 ⊢ (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8}) | |
16 | 14, 15 | mpbir 230 | . . . . . . 7 ⊢ ({1, 8} ∩ {3}) = ∅ |
17 | 7, 16 | eqtri 2764 | . . . . . 6 ⊢ ({3} ∩ {1, 8}) = ∅ |
18 | disj3 4393 | . . . . . 6 ⊢ (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8})) | |
19 | 17, 18 | mpbi 229 | . . . . 5 ⊢ {3} = ({3} ∖ {1, 8}) |
20 | 19 | eqcomi 2745 | . . . 4 ⊢ ({3} ∖ {1, 8}) = {3} |
21 | 6, 20 | uneq12i 4101 | . . 3 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3}) |
22 | uncom 4093 | . . 3 ⊢ (∅ ∪ {3}) = ({3} ∪ ∅) | |
23 | un0 4330 | . . 3 ⊢ ({3} ∪ ∅) = {3} | |
24 | 21, 22, 23 | 3eqtri 2768 | . 2 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3} |
25 | 2, 3, 24 | 3eqtri 2768 | 1 ⊢ ({1, 3} ∖ {1, 8}) = {3} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 ∖ cdif 3889 ∪ cun 3890 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 {csn 4565 {cpr 4567 1c1 10922 3c3 12079 8c8 12084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |