MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-dif Structured version   Visualization version   GIF version

Theorem ex-dif 30353
Description: Example for df-dif 3949. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-dif ({1, 3} ∖ {1, 8}) = {3}

Proof of Theorem ex-dif
StepHypRef Expression
1 df-pr 4626 . . 3 {1, 3} = ({1} ∪ {3})
21difeq1i 4114 . 2 ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8})
3 difundir 4279 . 2 (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8}))
4 snsspr1 4813 . . . . 5 {1} ⊆ {1, 8}
5 ssdif0 4359 . . . . 5 ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅)
64, 5mpbi 229 . . . 4 ({1} ∖ {1, 8}) = ∅
7 incom 4199 . . . . . . 7 ({3} ∩ {1, 8}) = ({1, 8} ∩ {3})
8 1re 11255 . . . . . . . . . 10 1 ∈ ℝ
9 1lt3 12431 . . . . . . . . . 10 1 < 3
108, 9gtneii 11367 . . . . . . . . 9 3 ≠ 1
11 3re 12338 . . . . . . . . . 10 3 ∈ ℝ
12 3lt8 12454 . . . . . . . . . 10 3 < 8
1311, 12ltneii 11368 . . . . . . . . 9 3 ≠ 8
1410, 13nelpri 4652 . . . . . . . 8 ¬ 3 ∈ {1, 8}
15 disjsn 4710 . . . . . . . 8 (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8})
1614, 15mpbir 230 . . . . . . 7 ({1, 8} ∩ {3}) = ∅
177, 16eqtri 2754 . . . . . 6 ({3} ∩ {1, 8}) = ∅
18 disj3 4448 . . . . . 6 (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8}))
1917, 18mpbi 229 . . . . 5 {3} = ({3} ∖ {1, 8})
2019eqcomi 2735 . . . 4 ({3} ∖ {1, 8}) = {3}
216, 20uneq12i 4158 . . 3 (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3})
22 uncom 4150 . . 3 (∅ ∪ {3}) = ({3} ∪ ∅)
23 un0 4388 . . 3 ({3} ∪ ∅) = {3}
2421, 22, 233eqtri 2758 . 2 (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3}
252, 3, 243eqtri 2758 1 ({1, 3} ∖ {1, 8}) = {3}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wcel 2099  cdif 3943  cun 3944  cin 3945  wss 3946  c0 4322  {csn 4623  {cpr 4625  1c1 11150  3c3 12314  8c8 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator