| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-dif | Structured version Visualization version GIF version | ||
| Description: Example for df-dif 3917. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-dif | ⊢ ({1, 3} ∖ {1, 8}) = {3} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4592 | . . 3 ⊢ {1, 3} = ({1} ∪ {3}) | |
| 2 | 1 | difeq1i 4085 | . 2 ⊢ ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8}) |
| 3 | difundir 4254 | . 2 ⊢ (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) | |
| 4 | snsspr1 4778 | . . . . 5 ⊢ {1} ⊆ {1, 8} | |
| 5 | ssdif0 4329 | . . . . 5 ⊢ ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅) | |
| 6 | 4, 5 | mpbi 230 | . . . 4 ⊢ ({1} ∖ {1, 8}) = ∅ |
| 7 | incom 4172 | . . . . . . 7 ⊢ ({3} ∩ {1, 8}) = ({1, 8} ∩ {3}) | |
| 8 | 1re 11174 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
| 9 | 1lt3 12354 | . . . . . . . . . 10 ⊢ 1 < 3 | |
| 10 | 8, 9 | gtneii 11286 | . . . . . . . . 9 ⊢ 3 ≠ 1 |
| 11 | 3re 12266 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
| 12 | 3lt8 12377 | . . . . . . . . . 10 ⊢ 3 < 8 | |
| 13 | 11, 12 | ltneii 11287 | . . . . . . . . 9 ⊢ 3 ≠ 8 |
| 14 | 10, 13 | nelpri 4619 | . . . . . . . 8 ⊢ ¬ 3 ∈ {1, 8} |
| 15 | disjsn 4675 | . . . . . . . 8 ⊢ (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8}) | |
| 16 | 14, 15 | mpbir 231 | . . . . . . 7 ⊢ ({1, 8} ∩ {3}) = ∅ |
| 17 | 7, 16 | eqtri 2752 | . . . . . 6 ⊢ ({3} ∩ {1, 8}) = ∅ |
| 18 | disj3 4417 | . . . . . 6 ⊢ (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8})) | |
| 19 | 17, 18 | mpbi 230 | . . . . 5 ⊢ {3} = ({3} ∖ {1, 8}) |
| 20 | 19 | eqcomi 2738 | . . . 4 ⊢ ({3} ∖ {1, 8}) = {3} |
| 21 | 6, 20 | uneq12i 4129 | . . 3 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3}) |
| 22 | uncom 4121 | . . 3 ⊢ (∅ ∪ {3}) = ({3} ∪ ∅) | |
| 23 | un0 4357 | . . 3 ⊢ ({3} ∪ ∅) = {3} | |
| 24 | 21, 22, 23 | 3eqtri 2756 | . 2 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3} |
| 25 | 2, 3, 24 | 3eqtri 2756 | 1 ⊢ ({1, 3} ∖ {1, 8}) = {3} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 {csn 4589 {cpr 4591 1c1 11069 3c3 12242 8c8 12247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |