| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-dif | Structured version Visualization version GIF version | ||
| Description: Example for df-dif 3929. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-dif | ⊢ ({1, 3} ∖ {1, 8}) = {3} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4604 | . . 3 ⊢ {1, 3} = ({1} ∪ {3}) | |
| 2 | 1 | difeq1i 4097 | . 2 ⊢ ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8}) |
| 3 | difundir 4266 | . 2 ⊢ (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) | |
| 4 | snsspr1 4790 | . . . . 5 ⊢ {1} ⊆ {1, 8} | |
| 5 | ssdif0 4341 | . . . . 5 ⊢ ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅) | |
| 6 | 4, 5 | mpbi 230 | . . . 4 ⊢ ({1} ∖ {1, 8}) = ∅ |
| 7 | incom 4184 | . . . . . . 7 ⊢ ({3} ∩ {1, 8}) = ({1, 8} ∩ {3}) | |
| 8 | 1re 11235 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
| 9 | 1lt3 12413 | . . . . . . . . . 10 ⊢ 1 < 3 | |
| 10 | 8, 9 | gtneii 11347 | . . . . . . . . 9 ⊢ 3 ≠ 1 |
| 11 | 3re 12320 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
| 12 | 3lt8 12436 | . . . . . . . . . 10 ⊢ 3 < 8 | |
| 13 | 11, 12 | ltneii 11348 | . . . . . . . . 9 ⊢ 3 ≠ 8 |
| 14 | 10, 13 | nelpri 4631 | . . . . . . . 8 ⊢ ¬ 3 ∈ {1, 8} |
| 15 | disjsn 4687 | . . . . . . . 8 ⊢ (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8}) | |
| 16 | 14, 15 | mpbir 231 | . . . . . . 7 ⊢ ({1, 8} ∩ {3}) = ∅ |
| 17 | 7, 16 | eqtri 2758 | . . . . . 6 ⊢ ({3} ∩ {1, 8}) = ∅ |
| 18 | disj3 4429 | . . . . . 6 ⊢ (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8})) | |
| 19 | 17, 18 | mpbi 230 | . . . . 5 ⊢ {3} = ({3} ∖ {1, 8}) |
| 20 | 19 | eqcomi 2744 | . . . 4 ⊢ ({3} ∖ {1, 8}) = {3} |
| 21 | 6, 20 | uneq12i 4141 | . . 3 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3}) |
| 22 | uncom 4133 | . . 3 ⊢ (∅ ∪ {3}) = ({3} ∪ ∅) | |
| 23 | un0 4369 | . . 3 ⊢ ({3} ∪ ∅) = {3} | |
| 24 | 21, 22, 23 | 3eqtri 2762 | . 2 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3} |
| 25 | 2, 3, 24 | 3eqtri 2762 | 1 ⊢ ({1, 3} ∖ {1, 8}) = {3} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 {cpr 4603 1c1 11130 3c3 12296 8c8 12301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |