| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-dif | Structured version Visualization version GIF version | ||
| Description: Example for df-dif 3920. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-dif | ⊢ ({1, 3} ∖ {1, 8}) = {3} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4595 | . . 3 ⊢ {1, 3} = ({1} ∪ {3}) | |
| 2 | 1 | difeq1i 4088 | . 2 ⊢ ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8}) |
| 3 | difundir 4257 | . 2 ⊢ (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) | |
| 4 | snsspr1 4781 | . . . . 5 ⊢ {1} ⊆ {1, 8} | |
| 5 | ssdif0 4332 | . . . . 5 ⊢ ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅) | |
| 6 | 4, 5 | mpbi 230 | . . . 4 ⊢ ({1} ∖ {1, 8}) = ∅ |
| 7 | incom 4175 | . . . . . . 7 ⊢ ({3} ∩ {1, 8}) = ({1, 8} ∩ {3}) | |
| 8 | 1re 11181 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
| 9 | 1lt3 12361 | . . . . . . . . . 10 ⊢ 1 < 3 | |
| 10 | 8, 9 | gtneii 11293 | . . . . . . . . 9 ⊢ 3 ≠ 1 |
| 11 | 3re 12273 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
| 12 | 3lt8 12384 | . . . . . . . . . 10 ⊢ 3 < 8 | |
| 13 | 11, 12 | ltneii 11294 | . . . . . . . . 9 ⊢ 3 ≠ 8 |
| 14 | 10, 13 | nelpri 4622 | . . . . . . . 8 ⊢ ¬ 3 ∈ {1, 8} |
| 15 | disjsn 4678 | . . . . . . . 8 ⊢ (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8}) | |
| 16 | 14, 15 | mpbir 231 | . . . . . . 7 ⊢ ({1, 8} ∩ {3}) = ∅ |
| 17 | 7, 16 | eqtri 2753 | . . . . . 6 ⊢ ({3} ∩ {1, 8}) = ∅ |
| 18 | disj3 4420 | . . . . . 6 ⊢ (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8})) | |
| 19 | 17, 18 | mpbi 230 | . . . . 5 ⊢ {3} = ({3} ∖ {1, 8}) |
| 20 | 19 | eqcomi 2739 | . . . 4 ⊢ ({3} ∖ {1, 8}) = {3} |
| 21 | 6, 20 | uneq12i 4132 | . . 3 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3}) |
| 22 | uncom 4124 | . . 3 ⊢ (∅ ∪ {3}) = ({3} ∪ ∅) | |
| 23 | un0 4360 | . . 3 ⊢ ({3} ∪ ∅) = {3} | |
| 24 | 21, 22, 23 | 3eqtri 2757 | . 2 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3} |
| 25 | 2, 3, 24 | 3eqtri 2757 | 1 ⊢ ({1, 3} ∖ {1, 8}) = {3} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 {cpr 4594 1c1 11076 3c3 12249 8c8 12254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |