MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-dif Structured version   Visualization version   GIF version

Theorem ex-dif 30404
Description: Example for df-dif 3929. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-dif ({1, 3} ∖ {1, 8}) = {3}

Proof of Theorem ex-dif
StepHypRef Expression
1 df-pr 4604 . . 3 {1, 3} = ({1} ∪ {3})
21difeq1i 4097 . 2 ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8})
3 difundir 4266 . 2 (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8}))
4 snsspr1 4790 . . . . 5 {1} ⊆ {1, 8}
5 ssdif0 4341 . . . . 5 ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅)
64, 5mpbi 230 . . . 4 ({1} ∖ {1, 8}) = ∅
7 incom 4184 . . . . . . 7 ({3} ∩ {1, 8}) = ({1, 8} ∩ {3})
8 1re 11235 . . . . . . . . . 10 1 ∈ ℝ
9 1lt3 12413 . . . . . . . . . 10 1 < 3
108, 9gtneii 11347 . . . . . . . . 9 3 ≠ 1
11 3re 12320 . . . . . . . . . 10 3 ∈ ℝ
12 3lt8 12436 . . . . . . . . . 10 3 < 8
1311, 12ltneii 11348 . . . . . . . . 9 3 ≠ 8
1410, 13nelpri 4631 . . . . . . . 8 ¬ 3 ∈ {1, 8}
15 disjsn 4687 . . . . . . . 8 (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8})
1614, 15mpbir 231 . . . . . . 7 ({1, 8} ∩ {3}) = ∅
177, 16eqtri 2758 . . . . . 6 ({3} ∩ {1, 8}) = ∅
18 disj3 4429 . . . . . 6 (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8}))
1917, 18mpbi 230 . . . . 5 {3} = ({3} ∖ {1, 8})
2019eqcomi 2744 . . . 4 ({3} ∖ {1, 8}) = {3}
216, 20uneq12i 4141 . . 3 (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3})
22 uncom 4133 . . 3 (∅ ∪ {3}) = ({3} ∪ ∅)
23 un0 4369 . . 3 ({3} ∪ ∅) = {3}
2421, 22, 233eqtri 2762 . 2 (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3}
252, 3, 243eqtri 2762 1 ({1, 3} ∖ {1, 8}) = {3}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601  {cpr 4603  1c1 11130  3c3 12296  8c8 12301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator