Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-dif | Structured version Visualization version GIF version |
Description: Example for df-dif 3894. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-dif | ⊢ ({1, 3} ∖ {1, 8}) = {3} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4569 | . . 3 ⊢ {1, 3} = ({1} ∪ {3}) | |
2 | 1 | difeq1i 4057 | . 2 ⊢ ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8}) |
3 | difundir 4219 | . 2 ⊢ (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) | |
4 | snsspr1 4752 | . . . . 5 ⊢ {1} ⊆ {1, 8} | |
5 | ssdif0 4302 | . . . . 5 ⊢ ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅) | |
6 | 4, 5 | mpbi 229 | . . . 4 ⊢ ({1} ∖ {1, 8}) = ∅ |
7 | incom 4139 | . . . . . . 7 ⊢ ({3} ∩ {1, 8}) = ({1, 8} ∩ {3}) | |
8 | 1re 10959 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
9 | 1lt3 12129 | . . . . . . . . . 10 ⊢ 1 < 3 | |
10 | 8, 9 | gtneii 11070 | . . . . . . . . 9 ⊢ 3 ≠ 1 |
11 | 3re 12036 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
12 | 3lt8 12152 | . . . . . . . . . 10 ⊢ 3 < 8 | |
13 | 11, 12 | ltneii 11071 | . . . . . . . . 9 ⊢ 3 ≠ 8 |
14 | 10, 13 | nelpri 4595 | . . . . . . . 8 ⊢ ¬ 3 ∈ {1, 8} |
15 | disjsn 4652 | . . . . . . . 8 ⊢ (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8}) | |
16 | 14, 15 | mpbir 230 | . . . . . . 7 ⊢ ({1, 8} ∩ {3}) = ∅ |
17 | 7, 16 | eqtri 2767 | . . . . . 6 ⊢ ({3} ∩ {1, 8}) = ∅ |
18 | disj3 4392 | . . . . . 6 ⊢ (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8})) | |
19 | 17, 18 | mpbi 229 | . . . . 5 ⊢ {3} = ({3} ∖ {1, 8}) |
20 | 19 | eqcomi 2748 | . . . 4 ⊢ ({3} ∖ {1, 8}) = {3} |
21 | 6, 20 | uneq12i 4099 | . . 3 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3}) |
22 | uncom 4091 | . . 3 ⊢ (∅ ∪ {3}) = ({3} ∪ ∅) | |
23 | un0 4329 | . . 3 ⊢ ({3} ∪ ∅) = {3} | |
24 | 21, 22, 23 | 3eqtri 2771 | . 2 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3} |
25 | 2, 3, 24 | 3eqtri 2771 | 1 ⊢ ({1, 3} ∖ {1, 8}) = {3} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 ∪ cun 3889 ∩ cin 3890 ⊆ wss 3891 ∅c0 4261 {csn 4566 {cpr 4568 1c1 10856 3c3 12012 8c8 12017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |