![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-dif | Structured version Visualization version GIF version |
Description: Example for df-dif 3951. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-dif | ⊢ ({1, 3} ∖ {1, 8}) = {3} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4631 | . . 3 ⊢ {1, 3} = ({1} ∪ {3}) | |
2 | 1 | difeq1i 4118 | . 2 ⊢ ({1, 3} ∖ {1, 8}) = (({1} ∪ {3}) ∖ {1, 8}) |
3 | difundir 4280 | . 2 ⊢ (({1} ∪ {3}) ∖ {1, 8}) = (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) | |
4 | snsspr1 4817 | . . . . 5 ⊢ {1} ⊆ {1, 8} | |
5 | ssdif0 4363 | . . . . 5 ⊢ ({1} ⊆ {1, 8} ↔ ({1} ∖ {1, 8}) = ∅) | |
6 | 4, 5 | mpbi 229 | . . . 4 ⊢ ({1} ∖ {1, 8}) = ∅ |
7 | incom 4201 | . . . . . . 7 ⊢ ({3} ∩ {1, 8}) = ({1, 8} ∩ {3}) | |
8 | 1re 11221 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
9 | 1lt3 12392 | . . . . . . . . . 10 ⊢ 1 < 3 | |
10 | 8, 9 | gtneii 11333 | . . . . . . . . 9 ⊢ 3 ≠ 1 |
11 | 3re 12299 | . . . . . . . . . 10 ⊢ 3 ∈ ℝ | |
12 | 3lt8 12415 | . . . . . . . . . 10 ⊢ 3 < 8 | |
13 | 11, 12 | ltneii 11334 | . . . . . . . . 9 ⊢ 3 ≠ 8 |
14 | 10, 13 | nelpri 4657 | . . . . . . . 8 ⊢ ¬ 3 ∈ {1, 8} |
15 | disjsn 4715 | . . . . . . . 8 ⊢ (({1, 8} ∩ {3}) = ∅ ↔ ¬ 3 ∈ {1, 8}) | |
16 | 14, 15 | mpbir 230 | . . . . . . 7 ⊢ ({1, 8} ∩ {3}) = ∅ |
17 | 7, 16 | eqtri 2759 | . . . . . 6 ⊢ ({3} ∩ {1, 8}) = ∅ |
18 | disj3 4453 | . . . . . 6 ⊢ (({3} ∩ {1, 8}) = ∅ ↔ {3} = ({3} ∖ {1, 8})) | |
19 | 17, 18 | mpbi 229 | . . . . 5 ⊢ {3} = ({3} ∖ {1, 8}) |
20 | 19 | eqcomi 2740 | . . . 4 ⊢ ({3} ∖ {1, 8}) = {3} |
21 | 6, 20 | uneq12i 4161 | . . 3 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = (∅ ∪ {3}) |
22 | uncom 4153 | . . 3 ⊢ (∅ ∪ {3}) = ({3} ∪ ∅) | |
23 | un0 4390 | . . 3 ⊢ ({3} ∪ ∅) = {3} | |
24 | 21, 22, 23 | 3eqtri 2763 | . 2 ⊢ (({1} ∖ {1, 8}) ∪ ({3} ∖ {1, 8})) = {3} |
25 | 2, 3, 24 | 3eqtri 2763 | 1 ⊢ ({1, 3} ∖ {1, 8}) = {3} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 ∖ cdif 3945 ∪ cun 3946 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 {csn 4628 {cpr 4630 1c1 11117 3c3 12275 8c8 12280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |