Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-natded9.20-2 | Structured version Visualization version GIF version |
Description: A more efficient proof of Theorem 9.20 of [Clemente] p. 45. Compare with ex-natded9.20 28781. (Contributed by David A. Wheeler, 19-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ex-natded9.20.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∨ 𝜃))) |
Ref | Expression |
---|---|
ex-natded9.20-2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ex-natded9.20.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∨ 𝜃))) | |
2 | 1 | simpld 495 | . . . 4 ⊢ (𝜑 → 𝜓) |
3 | 2 | anim1i 615 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
4 | 3 | orcd 870 | . 2 ⊢ ((𝜑 ∧ 𝜒) → ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃))) |
5 | 2 | anim1i 615 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ∧ 𝜃)) |
6 | 5 | olcd 871 | . 2 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃))) |
7 | 1 | simprd 496 | . 2 ⊢ (𝜑 → (𝜒 ∨ 𝜃)) |
8 | 4, 6, 7 | mpjaodan 956 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |