| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-natded9.20-2 | Structured version Visualization version GIF version | ||
| Description: A more efficient proof of Theorem 9.20 of [Clemente] p. 45. Compare with ex-natded9.20 30436. (Contributed by David A. Wheeler, 19-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ex-natded9.20.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∨ 𝜃))) |
| Ref | Expression |
|---|---|
| ex-natded9.20-2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-natded9.20.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∨ 𝜃))) | |
| 2 | 1 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | anim1i 615 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| 4 | 3 | orcd 874 | . 2 ⊢ ((𝜑 ∧ 𝜒) → ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃))) |
| 5 | 2 | anim1i 615 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ∧ 𝜃)) |
| 6 | 5 | olcd 875 | . 2 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃))) |
| 7 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∨ 𝜃)) |
| 8 | 4, 6, 7 | mpjaodan 961 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |